Development of quenual seedlings (polylepis incana) in the nursery as an effect of the different post-transplant substrates

Authors

  • Giovana Mary Domínguez-Santisteban Escuela Profesional de Ingeniería Agronómica, Facultad de Ciencias Agrarias, Universidad Nacional Hermilio Valdizán, Huánuco
  • Liliana Vega-Jara Escuela Profesional de Ingeniería Agronómica, Facultad de Ciencias Agrarias, Universidad Nacional Hermilio Valdizán, Huánuco

DOI:

https://doi.org/10.47840/ReInA.3.1.1043

Keywords:

Agricultural land, humus, fine sand, organic matter

Abstract

The objective was to determine the effect of the substrates on the vegetative propagation of the quenual, under nursery conditions. To meet this objective, a nursery trial was carried out in the town of Huacrachuco. The design was in DCA with 4 treatments and three repetitions, the treatments were the different substrates used to produce quenual seedlings in the nursery phase, these substrates were designed with the existing resources in the area, with low costs. A Control treatment (T0, with agricultural land + fine sand), T1 (black earth + humus + fine sand), T2 (agricultural land + black earth + fine sand) and treatment T3 (agricultural land + humus + fine sand) were used. ). The results indicated that T3 and T2 as the most recommended substrates to obtain seedlings with a greater number of shoots, a greater number of leaves, a greater length of the main root and among other desirable characteristics for a well-bearing and healthy seedling. These differences between treatments were magnified at 90 days after transplantation. The organic matter of the substrates was closely related to the vegetative development variables, as well as the N, P and K of the substrates strongly explained the development of the quenual seedlings. In conclusion, the substrate used with the T3 composed of agricultural soil plus humus and fine sand is the most suitable substrate to obtain well-developed vegetative seedlings.

Downloads

Download data is not yet available.

References

Bezdicek, D.C.; Papendick, R.I. y Lal, R. (1996). Introduction:Importance of Soil Quality to Helth and Sustainable Land Management. In: Doran, J. W. & Jones, A.J., (eds.) Methods for Assessing Soil Quality. SSSA Special Publication, Number 49, p 1-8.

Bhattacharyya, R.; Prakash, V.; Kundu, S.; Srivastva, A.K.; Gupta, H.S. y Mitra, S., (2010). Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-himalayas. Nutr. Cycling Agroecosyst. 86, 1–16.

Conde, K.; Huaycho, H.; Cruz, D. (2017). Aplicación de solución de humus de lombriz en dos variedades de Quinua (Chenopodium Quinoa Willd.), en la estación experimental de Patacamaya-La Paz. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales 4(1): 74-81.

Culman, S.W.; Snapp, S.S.; Freeman, M.A.; Schipanski, M.E.; Beniston, J.; Lal, R.; Drinkwater, L.E.; Franzluebbers, A.; Glover, J.D.; Grandy, A.S.; Lee, J.; Six, J.; Maul, J.E.; Mirsky, S.B.; Spargo, J.T. y Wander, M.M. (2012). Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Science Society of America Journal 76, 494–504.

Eghball, B.; Ginting, D. y Gilley, J.E. (2004). Efectos residuales de las aplicaciones de estiércol y compost en la producción de maíz y las propiedades del suelo. Agron. J. 96: 442-447.

Elbehri, A.; Putnam, D. A. y Schmitt, M. (1993). Nitrogen fertilizer and cultivar effects on yield and nitrogen-use efficiency of grain amaranth. Agron. J. 85: 120-128.

Geerts, S. D.; Raes, M.; García, J.; Vacher, R.; Mamani, J.; Mendoza, R.; Huanca, B.; Morales, R.; Miranda, J.; Usicanqui y Taboada, C. (2008). “Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.)”. Europ. J. Agronomy 28: 427 – 436.

IUCN. (2018). Red List of Threatened Species

Kessler, M. (2006). Bosques de Polylepis. Botánica económica de los Andes Centrales, 11.

MINAM. (2016). La conservación de los bosques en el Perú (2011-2016). Lima: Ministerio del Ambiente.

Mullo, A. (2001). Respuesta del cultivo de quinua a tres tipos de abonos orgánicos con tres niveles de aplicación, bajo el sistema de labranza. Tesis de Grado. Escuela Superior Politécnica de Chimborazo. Riobamba (Ecuador).

Olalde, V.M.; Escalante, J. A.; Sánchez, P.; Tijerina, L.; Engleman, E. M. y Mastache, A. A. (2000). Eficiencia en el uso del agua y del nitrógeno, y rendimiento del girasol, en función del nitrógeno y densidad de población en clima cálido. Terra 18: 51-59.

Reynel, C., y Marcelo, J. (2009). Árboles de los ecosistemas forestales andinos: Manual de identificación de especies. Serie de Investigación y Sistematización N°9. Lima: Programa regional ECOBONA – INTERCOOPERATION.

Salvagiotti, F.; Ferraris, G.; Quiroga, A.; Barraco, M.; Vivas, H.; Prystupa, P.; Echeverría, H. y Gutiérrez Boem, F.H. (2012). Identifying sulfur deficient fields by using sulfur content; N: S ratio and nutrient stoichiometric relationships in soybean seeds. F. Crop. Res. 135, 107–115.

Sánchez, J. M. B.; Villanueva, A. S. y Rubio, C. Q. (2013). “Azudas en Chile: un vernáculo sistema de riego en tierras de secano”. Papeles de Geografía 57: 69 – 84.

Servat, G. P.; Mendoza, W. y Ochoa, J. A. (2002). Flora y fauna de cuatro bosques de Polylepis (Rosaceae) en la cordillera del Vilcanota (Cusco, Perú). Ecología Aplicada, 25-35.

Shahid, M.; Nayak, A. K.; Puree, C.; Tripathi, R.; Lal, B.; Gautam, P.; … Shukla, A. K. (2017). Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil and Tillage Research, 170, 136–146.

Soudre, M. (2010). Transferencia de tecnológica de propagación vegetativa de especies forestales valiosas en las regiones de Loreto y Ucayali, a través de RAPVE. Loreto: INSTITUTO DE INVESTIGACIONES DE LA AMAZONÍA PERUANA – IIAP

Vega-Jara, L.; Gutiérrez-Boem, F. H.; García, F. y Rubio, G. (2020). Long-term fertilization does not affect soil carbón/nitrogen/sulfur ratios or the porportion between labile and nonlabile fractions in Mollisols. Soil science society of America Journal 84:798-810.

Wander, M.M.; Traina, S. J.; Stinner, B. R. y Peters, S. E. (1994). Organic and conventional management effects on biologically active soil organic matter pools. Soil Sci. Soc. Am. J. 58:1130-1139.

Downloads

Published

2021-03-31

Issue

Section

Artículos Originales

How to Cite

Development of quenual seedlings (polylepis incana) in the nursery as an effect of the different post-transplant substrates. (2021). Revista Investigación Agraria, 3(1), 29-37. https://doi.org/10.47840/ReInA.3.1.1043

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.