Relación entre el sembrado de nubes y la variación de los niveles de precipitación en zonas agrícolas del departamento de Arequipa
DOI:
https://doi.org/10.47840/ReInA.7.1.2335Palabras clave:
sembrado de nubes, precipitación, correlación, Arequipa, recursos hídricos.Resumen
El presente estudio analiza la relación entre el sembrado de nubes y los niveles de precipitación en zonas agrícolas del departamento de Arequipa, Perú, durante el año 2024. Utilizando un enfoque cuantitativo y un diseño no experimental transversal con alcance correlacional, se recopilaron datos de precipitación en zonas intervenidas y de control. Los resultados indican un aumento promedio del 25.3 % en los niveles de precipitación en las zonas intervenidas, con una correlación positiva alta (r > 0.8) entre la frecuencia de sembrado y los incrementos observados. Las pruebas estadísticas reflejaron diferencias significativas (p < 0.005), validando la efectividad del sembrado de nubes como herramienta para mitigar la escasez hídrica en regiones semiáridas. Además, las simulaciones numéricas predijeron los resultados con una diferencia menor al 3 %, evidenciando la confiabilidad de los modelos empleados. Sin embargo, se destacan áreas de mejora, como el monitoreo a largo plazo de los impactos ambientales. Este estudio proporciona una base científica sólida para la gestión estratégica de recursos hídricos en contextos vulnerables al cambio climático.
Descargas
Referencias
Azeez, H. M., Ibraheem, N. T., & Hussain, H. H. (2024). Alternate chemical compounds as a condensation nucleus in cloud seeding. Nature Environment and Pollution Technology, 23(3), 1795–1799. https://doi.org/10.46488/nept.2024.v23i03.052
Meng, L., Tian, Z., Fan, D., Van De Ven, F. H., Sun, L., Ye, Q., Sun, S., Liu, J., Nougues, L., & Rooze, D. (2024). A multi-objective optimization approach for harnessing rainwater in changing climate. Advances in Climate Change Research. https://doi.org/10.1016/j.accre.2024.08.006
Herman, K. S., & Sovacool, B. K. (2024). Applying the multi-level perspective to climate geoengineering: Sociotechnical bottlenecks for negative emissions and cloud seeding technologies. Energy Research & Social Science, 115, 103637. https://doi.org/10.1016/j.erss.2024.103637
Henderson, S., Bernert, M., Brida, D., Derks, G., Elmore, S., Federici, F., Harrison, J., Kirk, A., Kool, B., Lonigro, N., Lovell, J., Moulton, D., Reimerdes, H., Ryan, P., Stobbs, J., Verhaegh, K., Van Den Doel, T., Wijkamp, T., & Bardsley, O. (2024). Validating reduced models for detachment onset and reattachment times on MAST-U. Nuclear Materials and Energy, 101765. https://doi.org/10.1016/j.nme.2024.101765
Huang, J., Huang, J., Cai, J., Sun, S., & Peng, C. (2024). LIGHTWEIGHT DESIGN OF THE SEEDING WHEEL STRUCTURE OF RICE DIRECT SEEDER BASED ON TOPOLOGY OPTIMIZATION. INMATEH Agricultural Engineering, 325–334. https://doi.org/10.35633/inmateh-74-28
Yamashita, K., Kuo, W., Murakami, M., Tajiri, T., Saito, A., Orikasa, N., & Ohtake, H. (2024). Physical properties of background aerosols and cloud condensation nuclei measured in Kochi City in June 2010 and its implication for planned and inadvertent cloud modification. Journal of the Meteorological Society of Japan Ser II, 102(3), 353–363. https://doi.org/10.2151/jmsj.2024-016
Kuo, W., Yamashita, K., Murakami, M., Tajiri, T., & Orikasa, N. (2024). Numerical Simulation on Feasibility of Rain Enhancement by Hygroscopic Seeding over Kochi Area, Shikoku, Japan, in Early Summer. Journal of the Meteorological Society of Japan Ser II, 102(4), 429–443. https://doi.org/10.2151/jmsj.2024-021
Harrison, R. G., Alkamali, A. A., Escobar-Ruiz, V., Nicoll, K. A., & Ambaum, M. H. P. (2024). Providing charge emission for cloud seeding aircraft. AIP Advances, 14(9). https://doi.org/10.1063/5.0227533
Haywood, J. M., Jones, A., Jones, A. C., Halloran, P., & Rasch, P. J. (2023). Climate intervention using marine cloud brightening (MCB) compared with stratospheric aerosol injection (SAI) in the UKESM1 climate model. Atmospheric Chemistry and Physics, 23(24), 15305–15324. https://doi.org/10.5194/acp-23-15305-2023
Beer, C. G., Hendricks, J., & Righi, M. (2024). Impacts of ice-nucleating particles on cirrus clouds and radiation derived from global model simulations with MADE3 in EMAC. Atmospheric Chemistry and Physics, 24(5), 3217–3240. https://doi.org/10.5194/acp-24-3217-2024
Konwar, M., Werden, B., Fortner, E. C., Bera, S., Varghese, M., Chowdhuri, S., Hibert, K., Croteau, P., Jayne, J., Canagaratna, M., Malap, N., Jayakumar, S., Dixit, S. A., Murugavel, P., Axisa, D., Baumgardner, D., DeCarlo, P. F., Worsnop, D. R., & Prabhakaran, T. (2024). Identifying the seeding signature in cloud particles from hydrometeor residuals. Atmospheric Measurement Techniques, 17(8), 2387–2400. https://doi.org/10.5194/amt-17-2387-2024
Zhou, H., Dai, Z., Wu, C., Ma, X., Zhu, L., & Wu, P. (2024). Comparison of different impact factors and spatial scales in PM2.5 variation. Atmosphere, 15(3), 307. https://doi.org/10.3390/atmos15030307
Yan, L., Zhou, Y., Wu, Y., Cai, M., Peng, C., Song, C., Liu, S., & Liu, Y. (2024). FY-4A Measurement of Cloud-Seeding Effect and Validation of a Catalyst T&D Algorithm. Atmosphere, 15(5), 556. https://doi.org/10.3390/atmos15050556
Cotton, W. R. (2024). Aerosol-Induced Invigoration of Cumulus Clouds—A Review. Atmosphere, 15(8), 924. https://doi.org/10.3390/atmos15080924
Chen, J., Rösch, C., Rösch, M., Shilin, A., & Kanji, Z. A. (2024). Critical size of silver iodide containing glaciogenic cloud seeding particles. Geophysical Research Letters, 51(7). https://doi.org/10.1029/2023gl106680
Chen, C., Richter, J. H., Lee, W. R., MacMartin, D. G., & Kravitz, B. (2024). Rethinking the Susceptibility‐Based Strategy for Marine Cloud Brightening Climate Intervention: Experiment with CESM2 and its implications. Geophysical Research Letters, 51(10). https://doi.org/10.1029/2024gl108860
Lau, K. H., & Toumi, R. (2024). On the Spirality of the Asymmetric Rain Field of Tropical Cyclones Under Vertical Wind Shear. Geophysical Research Letters, 51(18). https://doi.org/10.1029/2024gl109388
Wang, F., Chen, B., Yue, Z., Wang, J., Li, D., Lin, D., Tang, Y., & Luan, T. (2024). A composite approach for evaluating operational cloud seeding effect in stratus clouds. Hydrology, 11(10), 167. https://doi.org/10.3390/hydrology11100167
Kretzschmar, J., Pöhlker, M., Stratmann, F., Wex, H., Wirth, C., & Quaas, J. (2024). From trees to rain: Enhancement of cloud glaciation and precipitation by pollen. Environmental Research Letters, 19(10), 104052. https://doi.org/10.1088/1748-9326/ad747a
Lee, M., Yoo, C., & Chang, K. (2023). Unexpected contribution of cloud seeding to NPP increase during drought. Hydrology Research, 55(1), 17–32. https://doi.org/10.2166/nh.2023.075
Istrate, V., Eremeico, S., Sîrbu, D. A., Popescu, E. V., Sîrbu, E., & Popescu, D. D. (2024). Investigation on radar characteristics of hailstorms seeded with the glaciogenic reagent in Romania. Present Environment and Sustainable Development, 18(1), 21–32. https://doi.org/10.47743/pesd2024181002
Ilie, N., Florea, D., Sârbu, D. A., & Popescu, E. V. (2024). Using light, unmanned helium balloons for rain enhancement. Present Environment and Sustainable Development, 18(1), 169–183. https://doi.org/10.47743/pesd2024181012
Ramelli, F., Henneberger, J., Fuchs, C., Miller, A. J., Omanovic, N., Spirig, R., Zhang, H., David, R. O., Ohneiser, K., Seifert, P., & Lohmann, U. (2024). Repurposing weather modification for cloud research showcased by ice crystal growth. PNAS Nexus, 3(9). https://doi.org/10.1093/pnasnexus/pgae402
Ren, X., & Jin, Y. (2024). Transport pathway of the Ag+ following artificial precipitation enhancement activities. Heliyon, 10(3), e25299. https://doi.org/10.1016/j.heliyon.2024.e25299
Ignaciuk, S., Zarajczyk, J., Różańska-Boczula, M., Borusiewicz, A., Kuboń, M., Barta, D., Choszcz, D. J., & Markowski, P. (2023). Predicting the seeding quality of radish seeds with the use of a family of Nakagami distribution functions. International Agrophysics, 38(1), 21–29. https://doi.org/10.31545/intagr/174994
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Revista Investigación Agraria

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.