Hybrid immunity and host factors: implications on serostatus induced by COVID-19 vaccines

Authors

  • Franklin E. Torres-Jiménez Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia
  • Evelyn Mendoza-Torres Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia
  • Adalgisa E. Alcocer-Olaciregui Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia
  • María F. Torres-Ferias Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia
  • Daniel A. Mendoza-Zapata Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia
  • Mariangel Cantillo-Barrios Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia
  • David J. Echeverría-Bernal Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia
  • Valentina Varón-Toscano Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia
  • Giselle P. Pineda-Awadalla Programa de Medicina. Facultad de Ciencias de la Salud, Exactas y Naturales; Universidad Libre, Seccional Barranquilla, Colombia

DOI:

https://doi.org/10.54034/mic.e2420

Keywords:

hybrid immunity, SARS-CoV-2: anti-S IgG antibodies, COVID-19 vaccines, humoral immune response

Abstract

Introduction: Monitoring the humoral immune response following SARS-CoV-2 vaccination is crucial to understanding long-term protection, especially in the context of hybrid immunity (HI). This study aimed to evaluate anti-S IgG antibody levels in adults with and without prior COVID-19 infection and explore associated host-related factors. Methods: A cross-sectional study was conducted in 102 adults from Colombia, grouped by infection history: Group A (with prior COVID-19) and Group B (without prior COVID-19). Anti-S IgG levels were quantified using chemiluminescent immunoassay. Sociodemographic, clinical, and vaccination data were collected via survey. Statistical comparisons were performed using t-tests, Mann–Whitney U tests, and linear regression analysis. Results: All participants exhibited seropositivity (100%) for anti-S IgG, with high titers persisting up to 23 months post-booster. No significant differences in antibody concentrations were found between groups (p = 0.830). Variables such as sex, age, comorbidities, and type of vaccine did not significantly influence antibody levels. A moderate, significant correlation was found between the number of booster doses and antibody titers in Group A (ρ = 0.453; p = 0.001), but not in Group B. Regression analysis predicted progressively higher titers with additional booster doses. Conclusions: Robust humoral responses were observed regardless of prior infection, indicating effective vaccine-induced immunity in this population. The number of booster doses was a key factor associated with higher antibody titers, particularly in individuals with hybrid immunity. These findings support the value of continued booster campaigns and underline the need for further research into functional immunity.

References

1. Weerarathna IN, Doelakeh ES, Kiwanuka L, Kumar P, Arora S. Prophylactic and therapeutic vaccine development: advancements and challenges. Mol Biomed. 2024;5(1):57. doi:10.1186/s43556-024-00222-x.

2. Tsagkli P, Geropeppa M, Papadatou I, Spoulou V. Hybrid Immunity against SARS-CoV-2 Variants: A Narrative Review of the Literature. Vaccines (Basel). 2024;12(9):1051. doi:10.3390/vaccines12091051.

3. World Health Organization. Interim statement on hybrid immunity and increasing population seroprevalence rates [Internet]. Geneva: WHO; 2021 [cited 2024 Jul 6]. Available from: https://www.who.int/news/item/01-06-2022-interim-statement-on-hybrid-immunity-and-increasing-population-seroprevalence-rates

4. Suntronwong N, Kanokudom S, Auphimai C, Thongmee T, Assawakosri S, Vichaiwattana P, et al. Long-term dynamic changes in hybrid immunity over six months after inactivated and adenoviral vector vaccination in individuals with previous SARS-CoV-2 infection. Vaccines (Basel). 2024;12(2):180. doi:10.3390/vaccines12020180.

5. Asociación Médica Mundial. Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos. 2013 [cited 2024 Jul 6]. Available from:

https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-ammprincipios-eticos-para-las-investigaciones-medicas-en-seres-humanos

6. República de Colombia. Ministerio de Salud. Resolución número 8430 de 1993 (4 de octubre). Por la cual se establecen las normas científicas, técnicas y administrati-vas para la investigación en salud. 1993 [cited 2024 Jul 6]. Available from:

https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF

7. Salmanton-García J, Wipfler P, Leckler J, Nauclér P, Mallon PW, Bruijning-Verhagen PCJL, et al. Predicting the next pandemic: VACCELERATE ranking of the WHO's Blueprint for Action to Prevent Epidemics. Travel Med Infect Dis. 2024;57:102676. doi:10.1016/j.tmaid.2023.102676.

8. World Health Organization. Vaccine efficacy, effectiveness and protection [Internet]. Geneva: WHO; 2025 Mar 10 [cited 2024 Jul 6]. Available from:

https://www.who.int/es/news-room/feature-stories/detail/vaccine-efficacy-effectiveness-and-protection

9. World Health Organization. Coronavirus disease (COVID-19): Serology, antibodies and immunity [Internet]. Geneva: WHO; 2020 Dec 31 [cited 2024 Jul 6]. Available from:

https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-serology

10. Martel F, Cuervo-Rojas J, Ángel J, Ariza B, González JM, Ramírez-Santana C, et al. Cross-reactive humoral and CD4+ T cell responses to Mu and Gamma SARS-CoV-2 variants in a Colombian population. Front Immunol. 2023;14:1241038. doi:10.3389/fimmu.2023.1241038.

11. Arévalo-Herrera M, Rincón-Orozco B, González-Escobar JM, Herrera-Arévalo SM, Carrasquilla-Agudelo E, Serna-Ortega PA, et al. Longitudinal follow-up of the specific antibody response to SARS-CoV-2 vaccination in Colombia. J Med Virol. 2025;97(1):e70133. doi:10.1002/jmv.70133.

12. Recalde-Reyes C, et al. Análisis de anticuerpos IgG contra el SARS-CoV-2 y coronavirus estacionales en adultos vacunados contra la COVID-19, 2021. Infectio. 2024;28(3):145–151. doi:10.22354/24223794.1184. Spanish.

13. Magesh S, John D, Li WT, Li Y, Mattingly-App A, Jain S, et al. Disparities in COVID-19 outcomes by race, ethnicity, and socioeconomic status: a systematic review and meta-analysis. JAMA Netw Open. 2021;4(11):e2134147. doi:10.1001/jamanetworkopen.2021.34147.

14. Spinardi JR, Srivastava A. Hybrid immunity to SARS-CoV-2 from infection and vaccination—evidence synthesis and implications for new COVID-19 vaccines. Biomedicines. 2023;11(2):370. doi:10.3390/biomedicines11020370.

15. Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science. 2021;372(6549):1418–1423. doi:10.1126/science.abh1282.

16. Krammer F, Srivastava K, Alshammary H, Amoako A, Awawda MH, Beach KF, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med. 2021;384:1372–1374. doi: 10.1056/NEJMc2101667.

17. Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals after mRNA vaccination. Sci Immunol. 2021; 6(58): eabi6950. doi:10.1126/sciimmunol.abi6950.

18. Franchi M, Pellegrini G, Cereda D, Bortolan F, Leoni O, Pavesi G, et al. Natural and vaccine-induced immunity are equivalent for the protection against SARS-CoV-2 infection. J Infect Public Health. 2023;16(8):1137–1141. doi: 10.1016/j.jiph.2023.05.018.

19. Rajan EJE, Alwar SV, Gulati R, Rajiv R, Mitra T, Janardhanan R. Prospecting the theragnostic potential of the psychoneuroendocrinological perturbation of the gut-brain-immune axis for improving cardiovascular diseases outcomes. Front Mol Biosci. 2024;10:1330327. doi: 10.3389/fmolb.2023.1330327.

20. Kodde C, Tafelski S, Balamitsa E, Nachtigall I, Bonsignore M. Factors influencing antibody response to SARS-CoV-2 vaccination. Vaccines (Basel). 2023;11(2):451. doi: 10.3390/vaccines11020451.

21. Jensen A, Stromme M, Moyassari S, Chadha AS, Tartaglia MC, Szoeke C, et al. COVID-19 vaccines: considering sex differences in efficacy and safety. Contemp Clin Trials. 2022;115:106700. doi:10.1016/j.cct.2022.106700.

22. De Biasi S, Lo Tartaro D, Neroni A, Rau M, Paschalidis N, Borella R, et al. Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients. Nat Commun. 2024;15(1):2752. doi:10.1038/s41467-024-47013-0.

23. Swamy S, Koch CA, Hannah-Shmouni F, Schiffrin EL, Klubo-Gwiezdzinska J, Gubbi S. Hypertension and COVID-19: updates from the era of vaccines and variants. J Clin Transl Endocrinol. 2022;27:100285. doi:10.1016/j.jcte.2021.100285.

24. He YF, Ouyang J, Hu XD, Wu N, Jiang ZG, Bian N, Wang J. Correlation between COVID-19 vaccination and diabetes mellitus: a systematic review. World J Diabetes. 2023;14(6):892–918. doi:10.4239/wjd.v14.i6.892.

25. Fu C, Lin N, Zhu J, Ye Q. Association between overweight/obesity and the safety and efficacy of COVID-19 vaccination: a systematic review. Vaccines (Basel). 2023;11(5):996. doi:10.3390/vaccines11050996.

26. Smith OA, Fujimoto B, Wong TAS, To A, Odo T, Ball A, et al. Impact of metabolic states on SARS-CoV-2 vaccine responses in mouse models of obesity and diabetes. COVID. 2025;5(1):2. doi:10.3390/covid5010002.

27. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Alleviation of COVID-19 symptoms and reduction in healthcare utilization among high-risk patients treated with nirmatrelvir/ritonavir (NMV/R): a phase 3 randomized trial. Clin Infect Dis. 2025; 80(2): 323–330. doi:10.1093/cid/ciae551.

28. Silva MJA, Ribeiro LR, Gouveia MIM, Marcelino BDR, Santos CSD, Lima KVB, et al. Hyperinflammatory response in COVID-19: a systematic review. Viruses. 2023;15(2):553. doi:10.3390/v15020553.

29. Wagenhäuser I, Almanzar G, Förg FB, Stein A, Eiter I, Reusch J, et al. Heterologous and homologous COVID-19 mRNA vaccination schemes for induction of basic immunity show similar immunogenicity regarding long-term spike-specific cellular immunity in healthcare workers. Vaccine. 2024;42(21):126132. doi:10.1016/j.vaccine.2024.07.033.

30. Flor N, García MI, Molineri A, Bottasso O, Diez C, Veaute C. Antibodies to SARS-CoV-2 induced by vaccination and infection correlate with protection against the infection. Vaccine. 2023;41(48):7206–7211. doi: 10.1016/j.vaccine.2023.10.038.

Published

2025-07-14

Issue

Section

ORIGINAL RESEARCH

How to Cite

1.
Hybrid immunity and host factors: implications on serostatus induced by COVID-19 vaccines. Microbes Infect. Chemother. [Internet]. 2025 Jul. 14 [cited 2025 Sep. 15];5:e2420. Available from: http://revistas.unheval.edu.pe/index.php/mic/article/view/2420

Similar Articles

21-30 of 91

You may also start an advanced similarity search for this article.