SARS-CoV-2 Mutations and Variants: what do we know so far?

Authors

  • Samuel Pecho-Silva Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru https://orcid.org/0000-0002-7477-9841
  • Joshuan J. Barboza Tau Relaped Group, Trujillo, Peru; Vicerrectorado de Investigacion, Universidad San Ignacio de Loyola, Lima, Peru https://orcid.org/0000-0002-2896-1407
  • Ana C. Navarro-Solsol Faculty of Medicine, Universidad Nacional de Ucayali, Pucallpa, Peru
  • Alfonso J. Rodriguez-Morales Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigacion GISCA, Fundacion Universitaria Autonoma de las Americas, Pereira, Risaralda, Colombia https://orcid.org/0000-0001-9773-2192
  • D. Katterine Bonilla-Aldana emillero de Investigación en Zoonosis (SIZOO), Grupo de Investigacion GISCA, Fundacion Universitaria Autonoma de las Americas, Pereira, Risaralda, Colombia
  • Vicky Panduro-Correa Hospital Regional Hermilio Valdizan, Huanuco, Peru; Faculty of Medicine, Universidad Nacional Hermilio Valdizan, Huanuco, Peru https://orcid.org/0000-0002-2445-4854

DOI:

https://doi.org/10.54034/mic.e1256

Keywords:

SARS-CoV-2, COVID-19, variants, pandemic, mutations

Abstract

With the circulation of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), there is a worry that an increase in transmission, hospitalisations, and deaths may occur efficacy of some vaccines may be compromised. Recently the WHO has recommended the use of labels with letters of the Greek alphabet. Then, the variants of concern are now called Alpha, Beta, Gamma, and Delta. So that the classification of the variants is more accessible and more practical when they are discussed in non-scientific audiences. In addition, the variants can be classified into three large groups according to their clinical capacity to affect global public health: variants of interest (VOI), variants of concern (VOC), and High consequence variant (VOHC). This review aims to explore the molecular and epidemiological characteristics of SARS-CoV-2 mutations and variants.

References

Das A, Ahmed R, Akhtar S, Begum K, Banu S. An overview of basic molecular biology of SARS-CoV-2 and current COVID-19 prevention strategies. Gene Rep. 2021;23:101122. doi:10.1016/j.genrep.2021.101122

Arteaga-Livias FK, Rodriguez-Morales AJ. ¿SARS-CoV-2 de Humanos a Animales? ¿Nueva amenaza de zoonosis? Rev Peru Investig Salud. 2020;4(2):55-56. doi:10.35839/repis.4.2.714

Brown EEF, Rezaei R, Jamieson TR, et al. Characterisation of Critical Determinants of ACE2-SARS CoV-2 RBD Interaction. Int J Mol Sci. 2021;22(5). doi:10.3390/ijms22052268

Ali F, Kasry A, Amin M. The new SARS-CoV-2 strain shows a stronger binding affinity to ACE2 due to N501Y mutant. Med Drug Discov. 2021;10:100086. doi:10.1016/j.medidd.2021.100086

Badua CLDC, Baldo KAT, Medina PMB. Genomic and proteomic mutation landscapes of SARS-CoV-2. J Med Virol. 2021;93(3):1702-1721. doi:10.1002/jmv.26548

Chen W-H, Wei J, Kundu RT, et al. Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate. Biochim Biophys Acta Gen Subj. 2021;1865(6):129893. doi:10.1016/j.bbagen.2021.129893

Anand NM, Liya DH, Pradhan AK, et al. A comprehensive SARS-CoV-2 genomic analysis identifies potential targets for drug repurposing. PloS One. 2021;16(3):e0248553. doi:10.1371/journal.pone.0248553

De Maio N, Walker CR, Turakhia Y, Lanfear R, Corbett-Detig R, Goldman N. Mutation Rates and Selection on Synonymous Mutations in SARS-CoV-2. Genome Biol Evol. 2021;13(5). doi:10.1093/gbe/evab087

Zaide G, Cohen-Gihon I, Israeli O, et al. Mutation Profile of SARS-CoV-2 Genome Sequences Originating from Eight Israeli Patient Isolates. Microbiol Resour Announc. 2021;10(1). doi:10.1128/MRA.01387-20

Wang B, Jiang L. Principal Component Analysis Applications in COVID-19 Genome Sequence Studies. Cogn Comput. Published online January 13, 2021:1-12. doi:10.1007/s12559-020-09790-w

Hamed SM, Elkhatib WF, Khairalla AS, Noreddin AM. Global dynamics of SARS-CoV-2 clades and their relation to COVID-19 epidemiology. Sci Rep. 2021;11(1):8435. doi:10.1038/s41598-021-87713-x

Nakamichi K, Shen JZ, Lee CS, et al. Hospitalisation and mortality associated with SARS-CoV-2 viral clades in COVID-19. Sci Rep. 2021;11(1):4802. doi:10.1038/s41598-021-82850-9

Diamond M, Chen R, Winkler E, et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Res Sq. Published online April 23, 2021. doi:10.21203/rs.3.rs-448370/v1

Hao Z, Li R, Hao C, Zhao H, Wan X, Guo D. Global Evidence of Temperature Acclimation of COVID-19 D614G Linage. Glob Chall Hoboken NJ. Published online February 15, 2021:2000132. doi:10.1002/gch2.202000132

Groves DC, Rowland-Jones SL, Angyal A. The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochem Biophys Res Commun. 2021;538:104-107. doi:10.1016/j.bbrc.2020.10.109

Daniloski Z, Jordan TX, Ilmain JK, et al. The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. eLife. 2021;10. doi:10.7554/eLife.65365

Gobeil SM-C, Janowska K, McDowell S, et al. D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Rep. 2021;34(2):108630. doi:10.1016/j.celrep.2020.108630

Hernández-Huerta MT, Pérez-Campos Mayoral L, Romero Díaz C, et al. Analysis of SARS-CoV-2 mutations in Mexico, Belize, and isolated regions of Guatemala and its implication in the diagnosis. J Med Virol. 2021;93(4):2099-2114. doi:10.1002/jmv.26591

Di Giacomo S, Mercatelli D, Rakhimov A, Giorgi FM. Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K. J Med Virol. Published online May 5, 2021. doi:10.1002/jmv.27062

Wang R, Chen J, Gao K, Wei G-W. Vaccine-escape and fast-growing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries. Genomics. 2021;113(4):2158-2170. doi:10.1016/j.ygeno.2021.05.006

Khan A, Zia T, Suleman M, et al. Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. J Cell Physiol. Published online March 23, 2021. doi:10.1002/jcp.30367

Goncalves Cabecinhas AR, Roloff T, Stange M, et al. SARS-CoV-2 N501Y Introductions and Transmissions in Switzerland from Beginning of October 2020 to February 2021-Implementation of Swiss-Wide Diagnostic Screening and Whole Genome Sequencing. Microorganisms. 2021;9(4). doi:10.3390/microorganisms9040677

Jia Z, Gong W. Will Mutations in the Spike Protein of SARS-CoV-2 Lead to the Failure of COVID-19 Vaccines? J Korean Med Sci. 2021;36(18):e124. doi:10.3346/jkms.2021.36.e124

Zhao Y, Lee A, Composto K, et al. A novel diagnostic test to screen SARS-CoV-2 variants containing E484K and N501Y mutations. Emerg Microbes Infect. 2021;10(1):994-997. doi:10.1080/22221751.2021.1929504

Tchesnokova V, Kulakesara H, Larson L, et al. acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-Cov-2 variants. BioRxiv Prepr Serv Biol. Published online March 11, 2021. doi:10.1101/2021.02.22.432189

Verghese M, Jiang B, Iwai N, et al. Identification of a SARS-CoV-2 Variant with L452R and E484Q Neutralization Resistance Mutations. J Clin Microbiol. Published online May 5, 2021. doi:10.1128/JCM.00741-21

Peng J, Liu J, Mann SA, et al. Estimation of secondary household attack rates for emergent spike L452R SARS-CoV-2 variants detected by genomic surveillance at a community-based testing site in San Francisco. Clin Infect Dis Off Publ Infect Dis Soc Am. Published online March 31, 2021. doi:10.1093/cid/ciab283

Gómez CE, Perdiguero B, Esteban M. Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19. Vaccines. 2021;9(3). doi:10.3390/vaccines9030243

Potdar V, Vipat V, Ramdasi A, et al. Phylogenetic classification of the whole-genome sequences of SARS-CoV-2 from India & evolutionary trends. Indian J Med Res. 2021;153(1 & 2):166-174. doi:10.4103/ijmr.IJMR_3418_20

Tracking SARS-CoV-2 variants. Accessed June 16, 2021. https://www.who.int/activities/tracking-SARS-CoV-2-variants

Resende PC, Gräf T, Paixão ACD, et al. A Potential SARS-CoV-2 Variant of Interest (VOI) Harboring Mutation E484K in the Spike Protein Was Identified within Lineage B.1.1.33 Circulating in Brazil. Viruses. 2021;13(5). doi:10.3390/v13050724

Charkiewicz R, Nikliński J, Biecek P, et al. The first SARS-CoV-2 genetic variants of concern (VOC) in Poland: The concept of a comprehensive approach to monitoring and surveillance of emerging variants. Adv Med Sci. 2021;66(2):237-245. doi:10.1016/j.advms.2021.03.005

CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. Published February 11, 2020. Accessed June 17, 2021. https://www.cdc.gov/coronavirus/2019-ncov/index.html

Almubaid Z, Al-Mubaid H. Analysis and comparison of genetic variants and mutations of the novel coronavirus SARS-CoV-2. Gene Rep. 2021;23:101064. doi:10.1016/j.genrep.2021.101064

Hodcroft EB, Domman DB, Snyder DJ, et al. Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting amino acid position 677. MedRxiv Prepr Serv Health Sci. Published online February 14, 2021. doi:10.1101/2021.02.12.21251658

Cheng L, Song S, Zhou B, et al. impact of the N501Y substitution of SARS-CoV-2 Spike on neutralising monoclonal antibodies targeting diverse epitopes. Virol J. 2021;18(1):87. doi:10.1186/s12985-021-01554-8

Davies NG, Jarvis CI, CMMID COVID-19 Working Group, et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021;593(7858):270-274. doi:10.1038/s41586-021-03426-1

Collier DA, De Marco A, Ferreira IATM, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021;593(7857):136-141. doi:10.1038/s41586-021-03412-7

Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2 variants to neutralisation by monoclonal and serum-derived polyclonal antibodies. Nat Med. 2021;27(4):717-726. doi:10.1038/s41591-021-01294-w

Wang P, Casner RG, Nair MS, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralisation. Cell Host Microbe. 2021;29(5):747-751.e4. doi:10.1016/j.chom.2021.04.007

Francisco R da S, Benites LF, Lamarca AP, et al. Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 co-infection events by two different lineages in Rio Grande do Sul, Brazil. Virus Res. 2021;296:198345. doi:10.1016/j.virusres.2021.198345

Jangra S, Ye C, Rathnasinghe R, et al. The E484K mutation in the SARS-CoV-2 spike protein reduces but does not abolish neutralising activity of human convalescent and post-vaccination sera. MedRxiv Prepr Serv Health Sci. Published online January 29, 2021. doi:10.1101/2021.01.26.21250543

Xie X, Liu Y, Liu J, et al. Neutralisation of SARS-CoV-2 spike 69/70 deletion, E484K, and N501Y variants by BNT162b2 vaccine-elicited sera. BioRxiv Prepr Serv Biol. Published online January 27, 2021. doi:10.1101/2021.01.27.427998

Márquez S, Prado-Vivar B, José Guadalupe J, et al. SARS-CoV-2 genome sequencing from COVID-19 in Ecuadorian patients: a whole country analysis. MedRxiv Prepr Serv Health Sci. Published online March 24, 2021. doi:10.1101/2021.03.19.21253620

Ramanathan M, Ferguson ID, Miao W, Khavari PA. SARS-CoV-2 B.1.1.7 and B.1.351 Spike variants bind human ACE2 with increased affinity. BioRxiv Prepr Serv Biol. Published online February 22, 2021. doi:10.1101/2021.02.22.432359

Gaymard A, Bosetti P, Feri A, et al. Early assessment of diffusion and possible expansion of SARS-CoV-2 Lineage 20I/501Y.V1 (B.1.1.7, variant of concern 202012/01) in France, January to March 2021. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull. 2021;26(9). doi:10.2807/1560-7917.ES.2021.26.9.2100133

Yadav PD, Gupta N, Nyayanit DA, et al. Imported SARS-CoV-2 V501Y.V2 variant (B.1.351) detected in travelers from South Africa and Tanzania to India. Travel Med Infect Dis. 2021;41:102023. doi:10.1016/j.tmaid.2021.102023

Wibmer CK, Ayres F, Hermanus T, et al. SARS-CoV-2 501Y.V2 escapes neutralisation by South African COVID-19 donor plasma. Nat Med. 2021;27(4):622-625. doi:10.1038/s41591-021-01285-x

Liu H, Wei P, Zhang Q, et al. 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to bamlanivimab in vitro. mAbs. 2021;13(1):1919285. doi:10.1080/19420862.2021.1919285

Li Q, Nie J, Wu J, et al. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell. 2021;184(9):2362-2371.e9. doi:10.1016/j.cell.2021.02.042

Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In: StatPearls. StatPearls Publishing; 2021. Accessed June 16, 2021. http://www.ncbi.nlm.nih.gov/books/NBK554776/

Zimerman RA, Cadegiani FA, Pereira E Costa RA, Goren A, Campello de Souza B. Stay-At-Home Orders Are Associated With Emergence of Novel SARS-CoV-2 Variants. Cureus. 2021;13(3):e13819. doi:10.7759/cureus.13819

Sabino EC, Buss LF, Carvalho MPS, et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet Lond Engl. 2021;397(10273):452-455. doi:10.1016/S0140-6736(21)00183-5

Bezerra MF, Machado LC, De Carvalho V do CV, et al. A Sanger-based approach for scaling up screening of SARS-CoV-2 variants of interest and concern. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2021;92:104910. doi:10.1016/j.meegid.2021.104910

Alkhansa A, Lakkis G, El Zein L. Mutational analysis of SARS-CoV-2 ORF8 during six months of COVID-19 pandemic. Gene Rep. 2021;23:101024. doi:10.1016/j.genrep.2021.101024

Deng X, Garcia-Knight MA, Khalid MM, et al. Transmission, infectivity, and antibody neutralisation of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. MedRxiv Prepr Serv Health Sci. Published online March 9, 2021. doi:10.1101/2021.03.07.21252647

McCallum M, Bassi J, Marco AD, et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. BioRxiv Prepr Serv Biol. Published online April 1, 2021. doi:10.1101/2021.03.31.437925

Jacobson KB, Pinsky BA, Rath MEM, et al. Post-vaccination SARS-CoV-2 infections and incidence of the B.1.427/B.1.429 variant among healthcare personnel at a northern California academic medical center. MedRxiv Prepr Serv Health Sci. Published online April 24, 2021. doi:10.1101/2021.04.14.21255431

Deng X, Garcia-Knight MA, Khalid MM, et al. Transmission, infectivity, and neutralisation of a spike L452R SARS-CoV-2 variant. Cell. Published online April 20, 2021. doi:10.1016/j.cell.2021.04.025

Lubinski B, Tang T, Daniel S, Jaimes JA, Whittaker GR. Functional evaluation of proteolytic activation for the SARS-CoV-2 variant B.1.1.7: role of the P681H mutation. BioRxiv Prepr Serv Biol. Published online April 8, 2021. doi:10.1101/2021.04.06.438731

Ozer EA, Simons LM, Adewumi OM, et al. High prevalence of SARS-CoV-2 B.1.1.7 (UK variant) and the novel B.1.5.2.5 lineage in Oyo State, Nigeria. MedRxiv Prepr Serv Health Sci. Published online April 17, 2021. doi:10.1101/2021.04.09.21255206

Chen J, Gao K, Wang R, Wei G-W. Revealing the threat of emerging SARS-CoV-2 mutations to antibody therapies. BioRxiv Prepr Serv Biol. Published online April 12, 2021. doi:10.1101/2021.04.12.439473

Romero PE, Dávila-Barclay A, Gonzáles L, et al. C. 37: Novel lineage expanding in Peru and Chile, with a convergent deletion in the ORF1a gene (Δ3675-3677) and a novel deletion in the Spike gene (Δ246-252, G75V, T76I, L452Q, F490S, T859N).

Alai S, Gujar N, Joshi M, Gautam M, Gairola S. Pan-India novel coronavirus SARS-CoV-2 genomics and global diversity analysis in spike protein. Heliyon. 2021;7(3):e06564. doi:10.1016/j.heliyon.2021.e06564

Singh J, Samal J, Kumar V, et al. Structure-Function Analyses of New SARS-CoV-2 Variants B.1.1.7, B.1.351 and B.1.1.28.1: Clinical, Diagnostic, Therapeutic and Public Health Implications. Viruses. 2021;13(3). doi:10.3390/v13030439

Srivastava S, Garg I, Bansal A, Kumar B. SARS-CoV-2 infection: physiological and environmental gift factors at high altitude. Virusdisease. Published online September 11, 2020:1-3. doi:10.1007/s13337-020-00626-7

Afrin SZ, Paul SK, Begum JA, et al. Extensive genetic diversity with novel mutations in spike glycoprotein of severe acute respiratory syndrome coronavirus 2, Bangladesh in late 2020. New Microbes New Infect. 2021;41:100889. doi:10.1016/j.nmni.2021.100889

Edara V-V, Lai L, Sahoo MK, et al. Infection and vaccine-induced neutralising antibody responses to the SARS-CoV-2 B.1.617.1 variant. BioRxiv Prepr Serv Biol. Published online May 10, 2021. doi:10.1101/2021.05.09.443299

Zhao S, Lou J, Cao L, et al. Quantifying the transmission advantage associated with N501Y substitution of SARS-CoV-2 in the UK: an early data-driven analysis. J Travel Med. 2021;28(2). doi:10.1093/jtm/taab011

Williams AH, Zhan C-G. Fast Prediction of Binding Affinities of the SARS-CoV-2 Spike Protein Mutant N501Y (UK Variant) with ACE2 and Miniprotein Drug Candidates. J Phys Chem B. 2021;125(17):4330-4336. doi:10.1021/acs.jpcb.1c00869

Campbell F, Archer B, Laurenson-Schafer H, et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance. 2021;26(24):2100509. doi:10.2807/1560-7917.ES.2021.26.24.2100509

Schlagenhauf P, Patel D, Rodriguez-Morales AJ, Gautret P, Grobusch MP, Leder K. Variants, vaccines and vaccination passports: Challenges and chances for travel medicine in 2021. Travel Med Infect Dis. 2021;40:101996.

Downloads

Published

2021-10-07

Issue

Section

REVIEW ARTICLE

How to Cite

1.
SARS-CoV-2 Mutations and Variants: what do we know so far?. Microbes Infect. Chemother. [Internet]. 2021 Oct. 7 [cited 2025 Sep. 15];1:e1256. Available from: http://revistas.unheval.edu.pe/index.php/mic/article/view/1256

Most read articles by the same author(s)

Similar Articles

51-60 of 90

You may also start an advanced similarity search for this article.