Bioaugmentation Approach using Pseudomonas and Bacillus for Malodour Reduction in Poultry Feacal Waste Management

Authors

  • Ismail B. Onajobi Olabisi Onabanjo University, Ago-Iwoye, Nigeria https://orcid.org/0000-0003-1234-0259
  • Oyindamola J. Samson Olabisi Onabanjo University, Ago-Iwoye, Nigeria https://orcid.org/0000-0003-0404-7634
  • Obasola E. Fagade Department of Microbiology, Faculty of Science, University of Ibadan, Ibadan
  • Adeniyi A. Ogunjobi Department of Microbiology, Faculty of Science, University of Ibadan, Ibadan

DOI:

https://doi.org/10.54034/mic.e1840

Keywords:

Bioaugmentation, Seeding, Poultry, odor, Pseudomonas, Bacillus

Abstract

Introduction. A workable strategy is bioaugmentation, which involves introducing certain bacteria in sufficient quantities to promote biodegradation. This study focuses on isolating and utilizing malodor-reducing bacteria from fecal wastes obtained from a poultry farm in Ashi, Ibadan. Methods. Standard methods were employed to isolate and identify species of Pseudomonas and Bacillus. Quantitative detection of hydrogen sulfide gas and other relevant parameters was performed using MSA Orion and Multi Gas Detector. Hydrogen sulfide (H2S) release was quantitatively monitored during fermentation, considering varying loads of inocula. Results. The bacterial isolates comprised Pseudomonas aeruginosa, P. fluorescens, P. putida, Bacillus fastidiosus, B. licheniformis, B. megaterium, B. subtilis, B. sphaericus, and B. thuringiensis. Odor levels varied based on inocula load and fermentation duration. In batches with Pseudomonas, hydrogen sulfide was undetectable after two days, while Bacillus-inoculated batches required ten days. The formation of microbial mats and subsequent decrease in H2S content contributed to malodor reduction. Notably, fluorescent pseudomonas exhibited successful mineralization during the treatment of fecal waste. Conclusion. Pseudomonas isolates demonstrated superior effectiveness in odor reduction compared to Bacillus isolates.

References

Edokpayi JN, Odiyo JO, Durowoju OS. Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa [Internet]. Water Quality. InTech; 2017. Available from: http://dx.doi.org/10.5772/66561

Adeyemi JO, Onajobi IB, Adebajo LO, Orji FA, Ilusanya OAF, Samson OJ. Biosurfactant Production Potential of some Bacteria recovered from Agro-industrial Wastes. FTSTJ. 2019; 4(3): 870-873.

Salim AA, Grbavčić S, Šekuljica N, Stefanović A, Jakovetić Tanasković S, Luković N, Knežević-Jugović Z. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods. Bioresour Technol. 2017 Mar;228:193-200. doi: 10.1016/j.biortech.2016.12.081

Onajobi IB, Idowu EO, Adeyemi JO, Samson OJ, Ogunyinka PI, Fagade OE. In vitro antibacterial activities and molecular characterization of bacterial species isolated from farmlands against selected pathogens. Biotechnol Rep (Amst). 2020 Aug 9;27:e00513. doi: 10.1016/j.btre.2020.e00513.

Martín-Hernández M, Suárez-Ojeda ME, Carrera J. Bioaugmentation for treating transient or continuous p-nitrophenol shock loads in an aerobic sequencing batch reactor. Bioresour Technol. 2012 Nov;123:150-6. doi: 10.1016/j.biortech.2012.07.014.

Ikeda-Ohtsubo W, Miyahara M, Kim SW, Yamada T, Matsuoka M, Watanabe A, Fushinobu S, Wakagi T, Shoun H, Miyauchi K, Endo G. Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. J Biosci Bioeng. 2013 Jan;115(1):37-42. doi: 10.1016/j.jbiosc.2012.08.015

Vijayanand S, Divyashree M. Bioremediation of heavy metals using biosurfactant producing microorganisms. Int. J. Pharm. Sci. Res. 2015; 6(5): 840-847.

Raper E, Stephenson T, Anderson DR, Fisher R, Soares A. Industrial wastewater treatment through bioaugmentation. Process Saf. Environ. Prot. 2018; 118,178–187.

Nguyen PY, Silva AF, Reis AC, Nunes OC, Rodrigues AM, Rodrigues JE, Cardoso VV, Benoliel MJ, Reis MAM, Oehmen A, Carvalho G. Bioaugmentation of membrane bioreactor with Achromobacter denitrificans strain PR1 for enhanced sulfamethoxazole removal in wastewater. Sci Total Environ. 2019 Jan 15;648:44-55. doi: 10.1016/j.scitotenv.2018.08.100.

Liu WX, Luo YM, Teng Y, Li ZG, Ma LQ. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health. 2010 32:23–29. doi:10.1007/s10653-009-9262-5

Tyagi M, da Fonseca MM, de Carvalho CC. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 2011 Apr;22(2):231-41. doi: 10.1007/s10532-010-9394-4.

Folorunso OR, Kayode S, Onibon VO. Poultry farm hygiene: microbiological quality assessment of drinking water used in layer chickens managed under the battery cage and deep litter systems at three poultry farms in southwestern Nigeria. Pak J Biol Sci. 2014 Jan 1;17(1):74-9. doi: 10.3923/pjbs.2014.74.79.

Amin MT, Alazba AA, Manzoor U. A review on removal of pollutants from water/ wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng. 2014, ID825910.

Zhou GJ, Ying GG, Liu S, Zhou LJ, Chen ZF, Peng FQ. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci Process Impacts. 2014 Aug;16(8):2018-27. doi: 10.1039/c4em00094c.

Gupta VK, Sadegh H, Yari M, Shahryari Ghoshekandi R, Maazinejad B, Chahardori M. Removal of ammonium ions from wastewater A short review in development of efficient methods. Glob. J. Environ. Sci. Manag. 2015; 1, 149–158.

Cruz H, Luckman P, Seviour T, Verstraete W, Laycock B, Pikaar I. Rapid removal of ammonium from domestic wastewater using polymer hydrogels. Sci Rep. 2018 Feb 13;8(1):2912. doi: 10.1038/s41598-018-21204-4.

Chen Q, Ni J. Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. J Ind Microbiol Biotechnol. 2011 Sep;38(9):1305-10. doi: 10.1007/s10295-010-0911-6.

AOAC. Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA. Methods. 2020 925.10, 65.17, 974.24, 992.16.

Omojasola, P, Folakemi K., Rowland M. Microbiological Quality Assessment and Physico-chemical Properties of Selected Poultry Feeds from Commercial Feed Millers in Ilorin, Nigeria. IJAAAR. 2015; 11 (1&2): 60-66.

Cheesbrough, M. Adaptive or Specific Immune Response.In:District Laboratory in Tropical Countries. 2nd Ed. Cape Town: CUP. 2010; pg11.

Bustamante M, Duran N, Diez M. Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J. Soil Sci. Plant Nutr. 2012; 12(4): 667-687.

Venty S, Sri H, Dewi A. Optimization of biosurfactant production in soybean oil by Rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution IOP Conf. Ser.: Earth Environ. Sci. 2016; 107: 1-8. doi: 10.1088/1755-1315/75/1/012013.

Onajobi IB, Adeyemi JO, Orji FA, Samson OJ, Egberongbe HO, Aina SA, Afolabi OT, Adebajo LO, Fagade OE. Characterization of biosurfactant producing bacterial strains isolated from agro-industrial wastes insouthwestern, Nigeria. Microbes Infect Chemother. 2023; 3: e1586.

Meenakshisundaram M, Pramila M, Rameshwari R. Isolation and screening of biosurfactant-producing bacteria from Uyyokondan river, Tiruchirappalli district, Tamilnadu. Int. J. of Adv. Res. 2016; 4(1): 107- 176.

Nordiyana N, Mohd R, Mohd E, Arbakariya B, Ruzniza M, Helmi W. Isolation and screening of high efficiency biosurfactant-producing bacteria Pseudomonas sp. JOBIMB. 2013; 1(1):25-31.

Ajao, A., Adebayo, G.B., Yakubu, S.E. Bioremediation of textile industrial effluentusing mixed culture of Pseudomonas aeruginosa and Bacillus subtilis immobilized onagar-agar in a bioreactor. J. Microbiol. Biotechnol. Res. Sch. Res. Libr. J. Microbiol. Biotech. Res 2011; 1, 50–56.

Yang JR, Wang Y, Chen H, Lyu YK. Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification. Bioresour Technol. 2019 Feb;274:56-64. doi: 10.1016/j.biortech.2018.10.052.

Sidkey NM, Mohamed HF, Elkhouly HI. Evaluation of Different Screening Methods for Biosurfactant Producers Isolated from Contaminated Egyptian Samples Grown on Industrial Olive Oil Processing Waste. MRJI. 2016; 17(4):1-9.

Halima A, Mohammed M, Abdenbi E, Hajar B, Fatima Z, Mohammed B.. Bioaugmentation process for the treatment of leachate collected from controlled landfills in Fez city-Morocco. Int J Environ Stud .2022. doi: 10.1080/00207233.2021.2017194.

Nwachukwu N, Orji A, Iheukwumere I, Ekeleme U. Antibiotic Resistant Environmental isolates of Listeria monocytogenes from Anthropogenic Lakes in Lokpa-Ukwu, Abia State of Nigeria. Aust. J. Basic & Appl. Sci. 2010; 4(7): 1571-1576.

Published

2023-06-12

Issue

Section

ORIGINAL RESEARCH

How to Cite

1.
Bioaugmentation Approach using Pseudomonas and Bacillus for Malodour Reduction in Poultry Feacal Waste Management. Microbes Infect. Chemother. [Internet]. 2023 Jun. 12 [cited 2025 Apr. 24];3:e1840. Available from: https://revistas.unheval.edu.pe/index.php/mic/article/view/1840

Most read articles by the same author(s)

Similar Articles

1-10 of 16

You may also start an advanced similarity search for this article.