The role of platelets and neutrophil extracellular traps (NETs) in sepsis: A comprehensive literature review


  • Jorge L. Vélez-Paez Facultad de Ciencias Medicas, Universidad Central del Ecuador, Quito, Ecuador
  • Fernando E. Rueda-Barragán Facultad de Ciencias Medicas, Universidad Central del Ecuador, Quito, Ecuador
  • Sarahí Dueñas-Andrade Facultad de Ciencias Medicas, Universidad Central del Ecuador, Quito, Ecuador
  • Alfonso Rodriguez-Morales Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
  • Nikolaos C. Kyriakidis Universidad de las Américas, Quito, Ecuador



sepsis, NETs, platelets


Sepsis is defined as "an organic dysfunction secondary to the dysregulated response of the patient to an infection." This concept only reveals the tip of the iceberg, the clinical expression of organic failures, without understanding their basis, which is currently explained by cellular and molecular phenomena. Neutrophils are crucial pillars of early innate immune responses, and their fundamental function is phagocytosis. Additionally, neutrophils can degranulate upon activation, releasing various antimicrobial enzymes and pro-inflammatory cytokines, and form neutrophil extracellular traps (NETs), whose purpose is to trap pathogens by releasing their "sticky" nuclear content; the presence of activated platelets amplifies this phenomenon. NETosis is a beneficial process; however, deregulated, it can be detrimental, inducing "immunothrombosis" and compromising the microcirculation, thereby increasing the clinical severity of sepsis. The purpose of this review is to clearly describe the pathophysiological role therapeutic target of NETs, their interaction with platelets in sepsis, and their potential as therapeutic targets, since it has been shown that a therapeutic approach aimed at curbing NETs would be beneficial.


Metrics Loading ...


Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287 CrossRef Full Text | Google Scholar

Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. Am J Respir Crit Care Med. (2016) 193:259–72. doi: 10.1164/rccm.201504-0781OC

Rhee C, Jones TM, Hamad Y, et al. Prevalence, Underlying Causes, and Preventability of Sepsis-Associated Mortality in US Acute Care Hospitals. JAMA Netw Open. 2019;2(2):e187571.


Jaimes F, Garcés J, Cuervo J, Ramírez F, Ramírez J, Vargas A, et al. The systemic inflammatory response syndrome (SIRS) to identify infected patients in the emergency room. Intensive Care Med. 2003;29:136871.

Gorordo-Delsol, Luis A., Merinos-Sánchez, Graciela, Estrada-Escobar, Ricardo A., Medveczky-Ordoñez, Nikolett I., Amezcua-Gutiérrez, Marcos A., Morales-Segura, Ma. Angélica, & Uribe-Moya, Silvia E.. (2020). Sepsis y choque séptico en los servicios de urgencias de México: estudio multicéntrico de prevalencia puntual. Gaceta médica de México, 156(6), 495-501. Epub 27 de mayo de 2021.

Rudd, K. E., Johnson, S. C., Agesa, K. M., Shackelford, K. A., Tsoi, D., Kievlan, D. R., Colombara, D. V., Ikuta, K. S., Kissoon, N., Finfer, S., Fleischmann-Struzek, C., Machado, F. R., Reinhart, K. K., Rowan, K., Seymour, C. W., Watson, R. S., West, T. E., Marinho, F., Hay, S. I., … Naghavi, M. (2020). Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, 395(10219), 200–211.

Zhang, Z., Zhang, G., Goyal, H. et al. Identification of subclasses of sepsis that showed different clinical outcomes and responses to amount of fluid resuscitation: a latent profile analysis. Crit Care 22, 347 (2018).

Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol. (2013) 93:329–42. doi: 10.1189/jlb.0912437

Cabrera-Perez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis, Rethinking the germ theory of disease. Exp Biol Med. (2017) 242:127–39. doi: 10.1177/1535370216669610

Gentile LF, Moldawer LL. DAMPS, PAMPS and the origins of SIRS in bacterial sepsis. Shock. (2013) 39:113– 4. doi: 10.1097/SHK.0b013e318277109c

Takeuchi O, Akira, S. Pattern recognition receptors and inflammation. Cell. (2010) 140:805–20. doi:


Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. (2013) 13:159–75. doi: 10.1038/nri3399

Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. (2018) 18:134–47. doi: 10.1038/nri.2017.105

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. (2004) 303:1532–5. doi: 10.1126/science.1092385 PubMed Abstract | CrossRef Full Text | Google Scholar

Mutua, V., & Gershwin, L. J. (2021). A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clinical reviews in allergy & immunology, 61(2), 194–211.

Ghoshal K, Bhattacharyya M. Overview of Platelet Physiology: Its Hemostatic and Nonhemostatic Role in Disease Pathogenesis. The Scientific World Journal. (2014) 2014:16. doi: 10.1155/2014/781857 Publisher Site

Fong KP, Barry C, Tran AN, Traxler EA, Wannemacher KM, Tang H, et al. Deciphering the human platelet sheddome. Blood. (2011) 117(1): e15–e26. doi: 10.1182/blood-2010-05-283838 Publisher Site

Garraud O, Cognasse F. Are Platelets Cells? And if Yes, are They Immune Cells? Frontiers in Immunology. (2015) 6: 70. doi: 10.3389/fimmu.2015.00070 Publisher Site

Sánchez-Zúñiga MJ. Netosis. Revista Mexicana de Anestesiología. (2019) 42: S47-S49. Publisher Site

Vorobjeva NV, Chernyak BV. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry (Mosc). (2020) 85(10):1178-1190. doi:

1134/S0006297920100065 PMC free article

Brinkmann V. Neutrophil extracellular traps in the second decade. J Innate Immun. (2018) 10:414–21. doi: 10.1159/000489829 PubMed Abstract | CrossRef Full Text | Google Scholar

Boone BA, Orlichenko L, Schapiro NE, Loughran P, Gianfrate GC, Ellis JT, et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. (2015) 22:326–34. doi: 10.1038/cgt.2015.21 PubMed Abstract | CrossRef Full Text | Google Scholar

Demkow U. Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis. Cancers (Basel). 2021;13(17):4495. Published 2021 Sep 6. doi:


Godínez VAR, Carrillo ER, Cabello AR. Trampas extracelulares de neutrófilos. Medicina Crítica. (2020) 34(2):156-159. doi: 10.35366/93970 Publisher Site

Yipp BG, Kubes P. NETosis: how vital is it? Blood. (2013) 122:2784–94. doi: 10.1182/blood-2013-04-457671 PubMed Abstract | CrossRef Full Text | Google Scholar

Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol. (2016) 7:302. doi:


Delgado-Rizo V, Martinez-Guzman MA, Iniguez-Gutierrez L, Garcia-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracelular traps and its implications in inflammation: an overview. Front Immunol. (2017) 8:81. doi: 10.3389/fimmu.2017.00081

Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, et al. Infectioninduced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. (2012) 18:1386–93. doi: 10.1038/nm.2847

Manda, Pruchniak MP, Arazna M, Demkow UA. Neutrophil extracelular traps in physiology and pathology. Cent Eur J Immunol. (2014) 39:116–21. doi: 10.5114/ceji.2014.42136

de Buhr N, von Köckritz-Blickwede M. How neutrophil extracellular traps become visible. J Immunol Res. (2016) 2016:4604713. doi: 10.1155/2016/4604713

Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracelular traps. Cell Death Differ. (2009) 16:1438–44. doi: 10.1038/cdd.2009.96

Carestia A, Kaufman T, Rivadeneyra L, Landoni VI, Pozner RG, Negrotto S, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol. (2016) 99:153–62. doi: 10.1189/jlb.3A0415-161R

Grommes, J.; Alard, J.-E.; Drechsler, M.; Wantha, S.; Mörgelin, M.; Kuebler, W.M.; Jacobs, M.; von Hundelshausen, P.; Markart, P.;Wygrecka, M.; et al. Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am. J. Respir. Crit. Care Med. 2012, 185, 628–636. [CrossRef] [PubMed]

Ma, AC; Kubes, P. Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis. J. Thromb. Haemost. 2008, 6, 415–420. [CrossRef] [PubMed]

Alhamdi, Y.; Toh, C.-H. The role of extracellular histones in haematological disorders. Br. J. Haematol. 2016,173, 805–811. [CrossRef]

Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [CrossRef]

Zhu, L.; Liu, L.; Zhang, Y.; Pu, L.; Liu, J.; Li, X.; Chen, Z.; Hao, Y.; Wang, B.; Han, J.; et al. High Level of Neutrophil Extracellular Traps Correlates With Poor Prognosis of Severe Influenza A Infection. The Journal of Infectious Diseases 2018, 217, 428–437. [CrossRef] [PubMed]

McDonald, B.; Davis, R.P.; Kim, S.-J.; Tse, M.; Esmon, CT; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1367. [CrossRef] [PubMed]

Fadini, G.P.; Menegazzo, L.; Rigato, M.; Scattolini, V.; Poncina, N.; Bruttocao, A.; Ciciliot, S.; Mammano, F.; Ciubotaru, C.D.; Brocco, E.; et al. NETosis Delays DiabeticWound Healing in Mice and Humans. Diabetes 2016, 65, 1061–1071. [CrossRef] Int. J. Mol. Sci. 2019, 20, 3494 11 of 13

Gupta, S.; Kaplan, M.J. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat. Rev. Nephrol. 2016, 12, 402–413. [CrossRef] [PubMed]

Perdomo, J.; Leung, H.H.L.; Ahmadi, Z.; Yan, F.; Chong, J.J.H.; Passam, F.H.; Chong, B.H. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat. Commun. 2019, 10, 1322. [CrossRef] [PubMed]

Sreeramkumar, V.; Adrover, J.M.; Ballesteros, I.; Cuartero, M.I.; Rossaint, J.; Bilbao, I.; Nácher, M.; Pitaval, C.; Radovanovic, I.; Fukui, Y.; et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014, 346, 1234–1238. [CrossRef] [PubMed]

Blair, P.; Rex, S.; Vitseva, O.; Beaulieu, L.; Tanriverdi, K.; Chakrabarti, S.; Hayashi, C.; Genco, C.A.; Iafrati, M.; Freedman, J.E. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ. Res. 2009, 104, 346–354. [CrossRef] [PubMed]

McDonald, B.; Urrutia, R.; Yipp, B.G.; Jenne, C.N.; Kubes, P. Intravascular Neutrophil Extracellular Traps Capture Bacteria from the Bloodstream during Sepsis. Cell Host Microbe 2012, 12, 324–333. [CrossRef] [PubMed]

Semeraro, F.; Ammollo, C.T.; Morrissey, J.H.; Dale, G.L.; Friese, P.; Esmon, NL; Esmon, CT Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood 2011, 118, 1952–1961. [CrossRef] [PubMed]

Engelmann, B.; Massberg, S. Thrombosis as an intravascular e_ector of innate immunity. Nat. Rev. Immunol.2012, 13, 34–45. [CrossRef] [PubMed]

Camicia, G.; Pozner, R.; de Larrañaga, G. Neutrophil extracellular traps in sepsis. Shock 2014, 42, 286–294. [CrossRef]

von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [CrossRef]

Massberg, S.; Grahl, L.; von Bruehl, M.L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16, 887–896. [CrossRef]

Zinsser, H.; Pryde, AW. Experimental study of physical factors, including fibrin formation, influencing the spread of fluids and small particles within and from the peritoneal cavity of the dog. Ann. Surg. 1952, 136, 818–827. [CrossRef]

Engelmann, B. Extracellular DNA and histones as thrombus stabilizer. Thromb. Haemost. 2015, 113, 1164. [PubMed]

Xu, J.; Zhang, X.; Monestier, M.; Esmon, NL; Esmon, CT Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol. 2011, 187, 2626–2631. [CrossRef] [PubMed]

Fajgenbaum D, June, C. Cytokine Storm. N Engl J Med 2020; 383:2255-2273 DOI: 10.1056/NEJMra2026131

Ventura-Santana, E., Ninan, J. R., Snyder, C. M., & Okeke, E. B. (2022). Neutrophil extracellular traps, sepsis and COVID-19 - A tripod stand. Frontiers in Immunology, 13, 902206.

Lerman YV, Kim M. Neutrophil Migration under normal and sepsis conditions. Cardiovasc Hematol Disord Drug Targets. (2015) 15:19–28. doi:


Gupta K, Joshi MB, Philippova M, Erne P, Hasler P, Hahn S, Resink TJ. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. (2010) 584:3193– 7. doi: 10.1016/j.febslet.2010.06.006

Kimball S, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol. (2016) 7:236. doi: 10.3389/fimmu.2016.00236

Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. (2014) 123:2768–76. doi: 10.1182/blood-2013-10-463646

Delabranche X, Stiel L, Severac F, Galoisy AC, Mauvieux L, Zobairi F, et al. Evidence of netosis in septic shock-induced disseminated intravascular coagulation. Shock. (2017) 47:313–17. doi: 10.1097/SHK.0000000000000719

McDonald A, Davis RP, Kim SJ, Tse M, Esmon CT, Kolaczkowska E, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. (2017) 129:1357– 67. doi: 10.1182/blood-2016-09-741298

Yang S, Qi H, Kan K, Chen J, Xie H, Guo X, et al. Neutrophil extracelular traps promote hypercoagulability in patients with sepsis. Shock. (2017) 47:132–9. doi:


Mikacenic A, Moore R, Dmyterko V, West TE, Altemeier WA, Liles WC, et al. Neutrophil extracellular traps (NETs) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit Care. (2018) 22:358. doi: 10.1186/s13054-018-2290-8

Li RH L, Johnson LR, Kohen C, Tablin F. A novel approach to identifying and quantifying neutrophil extracellular trap formation in septic dogs using immunofluorescence microscopy. BMC Vet Res. (2018) 14:210. doi:


Bosmann M, Grailer JJ, Ruemmler R, Russkamp NF, Zetoune FS, Sarma JV, et al. Extracellular histones are essential effectors of C5aR- and C5L2- mediated tissue damage and inflammation in acute lung injury. FASEB J. (2013) 27:5010–21. doi: 10.1096/fj.13-236380

Peterson MW, Walter ME, Nygaard SD. Effect of neutrophil mediators on epithelial permeability. Am J Respir Cell Mol Biol. (1995) 13:719–27. doi: 10.1165/ajrcmb.13.6.7576710

Li RHL, Tablin F. A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci. (2018) 5:291. doi: 10.3389/fvets.2018.00291

Shen XF, Cao K, Jiang JP, Guan WX, Du JF. Neutrophil dysregulation during sepsis: an overview and update. Journal of Cellular and Molecular Medicine. (2017) 21(9):1687-1697. doi:10.1111/jcmm.13112 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Lefrancais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. (2018) 3:98178. doi: 10.1172/jci.insight.98178 [PubMed Abstract] [CrossRef Full Text] [Google Scholar]

Czaikoski P. G., Mota J. M., Nascimento D. C., Sonego F., Castanheira F. V., Melo P. H., et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One. (2016). 11 (2): e0148142. doi: 10.1371/journal.pone.0148142 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Martinod K., Fuchs T. A., Zitomersky N. L., Wong S. L., Demers M., Gallant M., et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood. (2015). 125 (12): 1948–1956. doi: 10.1182/blood-2014-07-587709 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Biron BM, Chung CS, O'Brien XM, Chen Y, Reichner JS, Ayala A. Cl-amidine prevents histone 3 citrullination, net formation, and improves survival in a murine sepsis model. Journal of Innate Immunity. (2017) 9:22–32. doi: 10.1159/000448808 [CrossRef Full Text] [Google Scholar]

Semeraro F, Ammollo CT., Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. (2011). 118(7):1952–1961. doi: 10.1182/blood-2011-03-343061 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Li Y, Liu Z, Liu B, Zhao T, Chong W, Wang Y, et al. Citrullinated histone H3: a novel target for the treatment of sepsis. Surgery. (2014). doi: 156(2):229–234. 10.1016/j.surg.2014.04.009 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Martí-Carvajal AJ, Solà I, Gluud C, Lathyris D, Cardona AF. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev. (2012). 12(12):CD004388. doi: 10.1002 / 14651858.CD004388.pub6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Meara CHO, Coupland LA, Kordbacheh F, et al. Neutralizing the pathological effects of extracellular histones with small polyanions. Nat Commun. (2020). 11(1):6408. doi:10.1038/s41467-020-20231-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Boone BA, Murthy P, Miller-Ocuin J, Doerfler WR, Ellis JT, Liang X, et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer. (2018) 18:678. doi: 10.1186/s12885-018-4584-2 [PubMed Abstract] [CrossRef Full Text] [Google Scholar]

Caudrillier A, Kessenbrock K, Gilliss BM, et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. The Journal of Clinical Investigation. (2012). 122(7):2661-2671. doi: 10.1172 / JCI61303 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Liverani E, Rico MC, Tsygankov AY, Kilpatrick LE, Kunapuli SP. P2Y12 Receptor Modulates Sepsis-Induced Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology. (2016). 36(5):961-971. doi:

1161 / ATVBAHA.116.307401 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Mansour A, Bachelot-Loza C, Nesseler N, Gaussem P, Gouin-Thibault I. P2Y12 Inhibition beyond Thrombosis: Effects on Inflammation. Int J Mol Sci. 2020;21(4):1391. doi:10.3390/ijms21041391 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Eisen D. P., Reid D., McBryde E. S. Acetyl salicylic acid usage and mortality in critically ill patients with the systemic inflammatory response syndrome and sepsis. Critical Care Medicine. (2012). 40(6):1761–1767. doi:

1097/CCM.0b013e318246b9df [PubMed] [CrossRef] [Google Scholar]

Gollomp K, Sarkar A, Harikumar S, et al. Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Blood. (2020). 135(10):743-754. doi:

1182/blood.2019002329 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Shen X, Cao K, Zhao Y, Du J. Targeting Neutrophils in Sepsis: From Mechanism to Translation. Front Pharmacol. 2021;12:644270. doi: 10.3389/fphar.2021.644270 [PMC free article]



How to Cite

Vélez-Paez, J. L., Rueda-Barragán, F. E., Dueñas-Andrade, S., Rodriguez-Morales, A., & Kyriakidis, N. C. (2023). The role of platelets and neutrophil extracellular traps (NETs) in sepsis: A comprehensive literature review. Microbes, Infection and Chemotherapy, 3, e1595.