Characterization of biosurfactant-producing bacterial strains isolated from agro-industrial wastes in southwestern, Nigeria

Authors

  • Ismail B. Onajobi Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria https://orcid.org/0000-0003-1234-0259
  • Jamiu O. Adeyemi Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria https://orcid.org/0000-0001-9575-8727
  • Frank A. Orji Departamento de Biotecnología, Instituto Federal de Investigación Industrial, Oshodi, Nigeria
  • Oyindamola J. Samson Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye. https://orcid.org/0000-0003-0404-7634
  • Haneefat O. Egberongbe Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • Suliamon A. Aina Departamento de Zoología y Biología Ambiental, Facultad de Ciencias, Universidad Olabisi Onabanjo, Ago-Iwoye, Nigeria
  • Oluwabukola T. Afolabi Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria https://orcid.org/0000-0002-9783-847X
  • Lawrence O. Adebajo Department of Microbiology, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • Obasola E. Fagade Departamento de Microbiología, Facultad de Ciencias, Universidad de Ibadan, Ibadan, Nigeria

DOI:

https://doi.org/10.54034/mic.e1586

Keywords:

agro-industrial wastes, biosurfactants, bacteria, optimization, screening

Abstract

Introduction. The difficulty of managing trash and cleaning up the environment prompted interest in biosurfactants and surface-active proteins made by microbes. The study aims to augment bacterial isolates from agro-industrial wastes targeted for possible mass production of biosurfactants. Methods. Six agro-industrial wastes from Cassava, Palm kernel, and Sawdust from six agro-industrial sites within Ijebu area in Ogun State were collected for standard laboratory analyses in the Biotechnology Unit of the Federal Industrial Institute for Research, Oshodi (FIIRO). Five screening methods; blood hemolysis, lipase activity, blue agar hydrolysis, oil spreading, and emulsification index (EI24) were carried out to confirm biosurfactant production. Isolates with the highest hyper-production were subjected to 16rRNA molecular identification. Results. The study justified efficient biosurfactant production from 4 bacterial isolates out of 26 screened bacterial isolates from hydrocarbon degraders and 29 heterotrophic screened bacterial isolates, making a total of 55 screened bacterial isolates. Screening results reveal the emulsification capacities of identified Pseudomonas putida strain SG1, Acinetobacter baumanii strain MS14413, Bacillus zhangzhouensis strain cdsV18, and Burkholderia cepacia strain 717. Conclusion. Biosurfactant bacteria produced in all agricultural and industrial wastes considered in this study are capable of mass production.

 

References

Vijayanand S, Divyashree M. Bioremediation of heavy metals using biosurfactant producing microorganisms. Int. J. Pharm. Sci. Res. 2015; 6(5): 840-847.

Adeyemi JO, Onajobi IB, Adebajo LO, Orji FA, Ilusanya OAF, Samson OJ. Biosurfactant Production Potential of some Bacteria recovered from Agro-industrial Wastes. FTSTJ. 2019; 4(3): 870-873.

Kalvandi S, Garousin H, Pourbabaee AA, Farahbakhsh M. The release of petroleum hydrocarbons from a saline-sodic soil by the new biosurfactant-producing strain of Bacillus sp. Sci Rep. 2022; 12, 19770. https://doi.org/10.1038/s41598-022-24321-3

Salim AA, Grbavčić S, Šekuljica N, Stefanović A, Jakovetić Tanasković S, Luković N, Knežević-Jugović Z. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods. Bioresour Technol. 2017 Mar; 228:193-200. doi: 10.1016/j.biortech.2016.12.081.

Onajobi IB, Idowu EO, Adeyemi JO, Samson OJ, Ogunyinka PI, Fagade OE. In vitro antibacterial activities and molecular characterization of bacterial species isolated from farmlands against selected pathogens. Biotechnol Rep (Amst). 2020 Aug 9;27:e00513. doi:

1016/j.btre.2020.e00513.

Marchant R, Banat IM. Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol. 2012 Nov;30(11):558-65. doi:

1016/j.tibtech.2012.07.003.

Andreollia M, Zapparolia G, Angelini E, Lucchetta G, Lampisa S, Vallini G. Pseudomonas protegens MP12: a plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens, Microbiol. Res. 2019; 219 123–131.

Sandiford SK. Current developments in antibiotic discovery for treating Clostridium difficile infection, Expert Opin. Drug Discov. 2019; 14 (1) 71–79.

Wang M, Zhang B, Li G, Wu T, Sun D. Efficient remediation of crude oil-contaminated soil using a solvent/surfactant system. RSC Adv. 2019; 9(5), 2402–2411. https://doi.org/10.1039/C8RA09964B

Marchant R, Banat IM. Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol. 2012 Nov;30(11):558-65. doi:

1016/j.tibtech.2012.07.003.

Arora P, Kshirsagar PR, Rana DP, Dhakephalkar PK. Hyperthermophilic Clostridium sp. N-4 produced a glycoprotein biosurfactant that enhanced recovery of residual oil at 96 °C in lab studies. Colloids Surf B Biointerfaces. 2019 Oct 1;182:110372. doi: 10.1016/j.colsurfb.

Ray M, Kumar V, Banerjee C, Gupta P, Singh S, Singh A. Investigation of biosurfactants produced by three indigenous bacterial strains, their growth kinetics and their anthracene and fluorene tolerance. Ecotoxicol Environ Saf. 2021 Jan 15;208:111621. doi: 10.1016/j.ecoenv.2020.111621.

Das P, Mukherjee S, Sen R. Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol. 2009 Oct;100(20):4887-90. doi:

1016/j.biortech.2009.05.028.

Chikere BO, Chijioke–Osuji C. Microbial diversity and physicochemical properties of a crude oil polluted soil. Nig J Microbiol. 2002; 20: 1039-46.

Nwachukwu N, Orji A, Iheukwumere I, Ekeleme U. Antibiotic Resistant Environmental isolates of Listeria monocytogenes from Anthropogenic Lakes in Lokpa-Ukwu, Abia State of Nigeria. Aust. J. Basic & Appl. Sci. 2010; 4(7): 1571-1576.

Venty S, Sri H, Dewi A. Optimization of biosurfactant production in soybean oil by Rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution IOP Conf. Ser.: Earth Environ. Sci. 2016; 107: 1-8. doi: 10.1088/1755-1315/75/1/012013.

Fontes GC, Amaral PF, Nele M, Coelho MA. Factorial design to optimize biosurfactant production by Yarrowia lipolytica. J Biomed Biotechnol. 2010; 821306. doi: 10.1155/2010/821306.

Raza ZA, Khalid ZM, Khan MS, Banat IM, Rehman A, Naeem A, Saddique MT. Surface properties and sub-surface aggregate assimilation of rhamnolipid surfactants in different aqueous system. Biotechnology Letters 232 2010: 811–816.

Meenakshisundaram M, Pramila M, Rameshwari R. Isolation and screening of biosurfactant-producing bacteria from Uyyokondan river, Tiruchirappalli district, Tamilnadu. Int. J. of Adv. Res. 2016; 4(1): 107- 176.

www.journalijar.com

Ibrahim M, Ijah U, Manga S, Bilbis L, Umar S. Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int. Biodeterior. Biodegradation. 2013; 81: 28–34. doi:

1016/j.ibiod.2012.11.012

Sidkey NM, Mohamed HF, Elkhouly HI. Evaluation of Different Screening Methods for Biosurfactant Producers Isolated from Contaminated Egyptian Samples Grown on Industrial Olive Oil Processing Waste. MRJI. 2016; 17(4):1-9.

Joshi M, Deshpande J. Polymerase chain reaction: Methods, principles and applications. International Journal of Biochemistry Resources 2010; 1(15): 81-97.

Zhang JT, Liang X. One-way ANOVA for functional data via globalizing the pointwise FF-test. Scand J Stat 2014; 41:51–71.

Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010 Jun;87(2):427-44. doi: 10.1007/s00253-010-2589-0.

Gharaei-Fathabad, E. Biosurfactants in pharmaceutical industry: A Mini– Review. Am. J. Drug Discov. Dev. 2011; 1: 58-69.

Lee SY, Lee DY, Kim TY. Systems biotechnology for strain improvement. Trends Biotechnol. 2005 Jul;23(7):349-58. doi: 10.1016/j.tibtech.2005.05.003.

Bustamante M, Duran N, Diez M. Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J. Soil Sci. Plant Nutr. 2012; 12(4): 667-687.

Nordiyana N, Mohd R, Mohd E, Arbakariya B, Ruzniza M, Helmi W. Isolation and screening of high efficiency biosurfactant-producing bacteria Pseudomonas sp. JOBIMB. 2013; 1(1):25-31.

Femi-Ola TO, Oluwole OA, Olowomofe TO, Yakubu H. Isolation and screening of biosurfactant producing bacteria from soil contaminated with domestic waste water. J. Nat. Sci. Res. 2016; 4(13): 59-68.

Silva TR, Duarte AWF, Passarini MRZ, Ruiz ALTG, Franco CH, Moraes CB, et al. Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol. 2018; 41 1505–1519.

Makkar RS, Cameotra SS, Banat IM. Advances in utilization of renewable substrates for biosurfactant production. AMB Express. 2011 Mar 28;1(1):5. doi: 10.1186/2191-0855-1-5

Published

2023-01-18

How to Cite

1.
Onajobi IB, Adeyemi JO, Orji FA, Samson OJ, Egberongbe HO, Aina SA, Afolabi OT, Adebajo LO, Fagade OE. Characterization of biosurfactant-producing bacterial strains isolated from agro-industrial wastes in southwestern, Nigeria. Microbes Infect. Chemother. [Internet]. 2023 Jan. 18 [cited 2024 Dec. 9];3:e1586. Available from: https://revistas.unheval.edu.pe/index.php/mic/article/view/1586

Issue

Section

ORIGINAL RESEARCH

Most read articles by the same author(s)