Investigations on microbiome of the used clinical device revealed many uncultivable newer bacterial species associated with persistent chronic infections

Authors

  • Ashutosh Kumar Amar Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
  • Kalaivani Ramakrishnan Department of Microbiology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth – Deemed University, Pondicherry, India
  • Ajit Ramesh Sawant Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
  • Karamveer Karamveer Centre for Bioinformatics, Pondicherry University Pondicherry, India https://orcid.org/0000-0002-5339-3317
  • Jagdish Menon Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
  • Basant K. Tiwary Centre for Bioinformatics, Pondicherry University Pondicherry, India https://orcid.org/0000-0002-8194-5860
  • Kenchappa Prashanth Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India https://orcid.org/0000-0002-1952-1848

DOI:

https://doi.org/10.54034/mic.e1542

Keywords:

culture-negative infection, Device microbiome, Persistent infection, 16S rRNA gene sequence analysis, metagenome analysis

Abstract

Introduction. Chronic persistent device-related infections (DRIs) often give culture-negative results in a microbiological investigation. In such cases, investigations on the device metagenome might have a diagnostic value. Materials and Methods. The 16SrRNA gene sequence analysis and next-generation sequencing (NGS) of clinical metagenome were performed to detect bacterial diversity on invasive medical devices possibly involved in culture-negative DRIs. Device samples were first subjected to microbiological investigation followed by metagenome analysis. Environmental DNA (e-DNA) isolated from device samples was subjected to 16SrRNA gene amplification followed by Sanger sequencing (n=14). In addition, NGS of the device metagenome was also performed (n=12). Five samples were only common in both methods. Results. Microbial growth was observed in only nine cases; among these, five cases were considered significant growth, and in the remaining four cases, growth was considered either insignificant or contaminated. Culture and sequencing analysis yielded identical results only in six cases. In culture-negative cases, Sanger sequencing of 16SrRNA gene and NGS of 16SrDNA microbiome was able to identify the presence of rarely described human pathogens, namely Streptococcus infantis, Gemella haemolysans, Meiothermus silvanus, Schlegelella aquatica, Rothia mucilaginosa, Serratia nematodiphila, and Enterobacter asburiae, along with some known common nosocomial pathogens. Bacterial species such as M. silvanus and S. nematodiphila that are never reported in human infection were also identified. Conclusions. Results of a small number of diverse samples of this pilot study might lead to a path to study a large number of device samples that may validate the diversity witnessed. The study shows that a culture free, a holistic metagenomic approach using NGS could help identify the pathogens in culture-negative chronic DRIs.

References

Brouqui P, Raoult D. Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev. 2001;14(1):177-207. doi:10.1128/CMR.14.1.177-207.2001

Oliver JD. Recent findings on the viable but non-culturable state in pathogenic bacteria. FEMS Microbiol Rev. 2010;34(4):415-425. doi:10.1111/j.1574-6976.2009.00200.x

Zargar N, Marashi MA, Ashraf H, Hakopian R, Beigi P. Identification of microorganisms in persistent/secondary endodontic infections with respect to clinical and radiographic findings: bacterial culture and molecular detection. Iran J Microbiol. 2019; 11(2):120-128.

Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005; 28(11):1062-1068. doi:10.1177/039139880502801103

Dempsey KE, Riggio MP, Lennon A, et al. identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture. Arthritis Res Ther. 2007; 9(3):R46. doi:10.1186/ar2201

Bonnet M, Lagier JC, Raoult D, Khelaifia S. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes New Infect. 2019; 34:100622. Published 2019 Nov 30. doi:10.1016/j.nmni.2019.100622

Thoendel MJ, Jeraldo PR, Greenwood-Quaintance KE, et al. Identification of Prosthetic Joint Infection Pathogens Using a Shotgun Metagenomics Approach. Clin Infect Dis. 2018; 67(9):1333-1338. doi:10.1093/cid/ciy303

Goig GA, Blanco S, Garcia-Basteiro AL, Comas I. Contaminant DNA in bacterial sequencing experiments is a major source of false genetic variability. BMC Biol. 2020; 18(1):24. Published 2020 Mar 2. doi:10.1186/s12915-020-0748-z

Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000; 40(2):175-179. doi:10.1016/s0167-7012(00)00122-6

CLSI, Performance Standards for Antimicrobial Susceptibility Testing; 30th Informational Supplement. 2020; CLSI document M100-S30. CLSI, Wayne, PA

Bag S, Saha B, Mehta O, et al. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples. Sci Rep. 2016; 6:26775. Published 2016 May 31. doi:10.1038/srep26775

Shamim K, Sharma J, Dubey SK. Rapid and efficient method to extract metagenomic DNA from estuarine sediments. 3 Biotech. 2017; 7(3):182. doi:10.1007/s13205-017-0846-y

Balamurugan P, Joshi MH, Rao TS. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria. Biofouling. 2011; 27(9):967-978. doi:10.1080/ 08927014.2011.618636

Purty S, Saranathan R, Prashanth K, et al. The expanding spectrum of human infections caused by Kocuria species: a case report and literature review. Emerg Microbes Infect. 2013; 2(10):e71. doi:10.1038/emi.2013.71

Aslanzadeh J. Preventing PCR amplification carryover contamination in a clinical laboratory. Ann Clin Lab Sci. 2004; 34(4):389-396.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7):581-583. doi:10.1038/nmeth.3869

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013; 10(10):996-998. doi:10.1038/nmeth.2604

Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018; 34(14):2371-2375. doi:10.1093/bioinformatics/bty113

Hall M, Beiko RG. 16S rRNA Gene Analysis with QIIME2. Methods Mol Biol. 2018; 1849:113-129. doi:10.1007/978-1-4939-8728-3_8

Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013; 41(Database issue):D590-D596. doi:10.1093/nar/gks1219

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73(16):5261-5267. doi:10.1128/AEM.00062-07

Swenson CE, Sadikot RT. Achromobacter respiratory infections. Ann Am Thorac Soc. 2015; 12(2):252-258. doi:10.1513/AnnalsATS.201406-288FR

Amoureux L, Bador J, Verrier T, Mjahed H, DE Curraize C, Neuwirth C. Achromobacter xylosoxidans is the predominant Achromobacter species isolated from diverse non-respiratory samples. Epidemiol Infect. 2016; 144(16):3527-3530. doi:10.1017/S0950268816001564

Nseir W, Khateeb J, Awawdeh M, Ghali M. Catheter-related bacteremia caused by Comamonas testosteroni in a hemodialysis patient. Hemodial Int. 2011; 15(2):293-296. doi:10.1111/j.1542-4758.2010.00524.x

Lema I, Gómez-Torreiro M, Rodríguez-Ares MT. Comamonas acidovorans keratitis in a hydrogel contact lens wearer. CLAO J. 2001; 27(1):55-56.

Corti G, Panunzi I, Losco M, Buzzi R. Post-surgical osteomyelitis caused by Enterobacter sakazakii in a healthy young man. J Chemother. 2007; 19(1):94-96. doi:10.1179/ joc.2007.19.1.94

Bhat GK, Anandhi RS, Dhanya VC, Shenoy SM. Urinary tract infection due to Enterobacter sakazakii. Indian J Pathol Microbiol. 2009; 52(3):430-431. doi:10.4103/0377-4929.55017

Chemaly RF, Dantes R, Shah DP, et al. Cluster and sporadic cases of herbaspirillum species infections in patients with cancer. Clin Infect Dis. 2015; 60(1):48-54. doi:10.1093/ cid/ciu712

Bartzokas CA, Johnson R, Jane M, Martin MV, Pearce PK, Saw Y. Relation between mouth and haematogenous infection in total joint replacements. BMJ. 1994; 309(6953):506-508. doi:10.1136/bmj.309.6953.506

Waldman BJ, Mont MA, Hungerford DS. Total knee arthroplasty infections associated with dental procedures. Clin Orthop Relat Res. 1997; (343):164-172.

LaPorte DM, Waldman BJ, Mont MA, Hungerford DS. Infections associated with dental procedures in total hip arthroplasty. J Bone Joint Surg Br. 1999; 81(1):56-59. doi:10.1302/0301-620x.81b1.8608

Tsuzukibashi O, Uchibori S, Kobayashi T, et al. isolation and identification methods of Rothia species in oral cavities. J Microbiol Methods. 2017; 134:21-26. doi:10.1016/ j.mimet.2017.01.005

Hayashi T, Uchiumi H, Yanagisawa K, et al. Recurrent Gemella haemolysans meningitis in a patient with osteomyelitis of the clivus. Intern Med. 2013; 52(18):2145-2147. doi:10.2169/internalmedicine.52.0436

Galen BT, Banach DB, Gitman MR, Trow TK. Meningoencephalitis due to Gemella haemolysans. J Med Microbiol. 2014; 63(Pt 1):138-139. doi:10.1099/ jmm.0.063347-0

Raulio M, Järn M, Ahola J, et al. Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods. J Ind Microbiol Biotechnol. 2008; 35(7):751-760. doi:10.1007/s10295-008-0343-8

de Abreu PM, Farias PG, Paiva GS, Almeida AM, Morais PV. Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiol. 2014; 14:118. Published 2014 May 8. doi:10.1186/1471-2180-14-118

Curty G, Costa RL, Siqueira JD, et al. analysis of the cervical microbiome and potential biomarkers from postpartum HIV-positive women displaying cervical intraepithelial lesions. Sci Rep. 2017; 7(1):17364. Published 2017 Dec 12. doi:10.1038/s41598-017-17351-9

Alekseyenko AV, Perez-Perez GI, De Souza A, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1(1):31. Published 2013 Dec 23. doi:10.1186/2049-2618-1-31

Bek-Thomsen M, Tettelin H, Hance I, Nelson KE, Kilian M. Population diversity and dynamics of Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis in the upper respiratory tracts of adults, determined by a nonculture strategy. Infect Immun. 2008; 76(5):1889-1896. doi:10.1128/IAI.01511-07

Rotova V, Papagiannitsis CC, Chudejova K, et al. First description of the emergence of Enterobacter asburiae producing IMI-2 carbapenemase in the Czech Republic. J Glob Antimicrob Resist. 2017; 11:98-99. doi:10.1016/ j.jgar.2017.10.001

Rampini SK, Bloemberg GV, Keller PM, et al. Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. Clin Infect Dis. 2011; 53(12):1245-1251. doi:10.1093/cid/cir692

Jenkins A, Hvidsten D, Matussek A, Lindgren PE, Stuen S, Kristiansen BE. Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from Norway: evaluation of a PCR test targeting the chromosomal flaB gene. Exp Appl Acarol. 2012;58(4):431-439. doi:10.1007/s10493-012-9585-2

Hilton SK, Castro-Nallar E, Pérez-Losada M, et al. Metataxonomic and Metagenomic Approaches vs. Culture-Based Techniques for Clinical Pathology. Front Microbiol. 2016; 7:484. Published 2016 Apr 7. doi:10.3389/

Published

2022-12-13

Issue

Section

ORIGINAL RESEARCH

How to Cite

1.
Investigations on microbiome of the used clinical device revealed many uncultivable newer bacterial species associated with persistent chronic infections. Microbes Infect. Chemother. [Internet]. 2022 Dec. 13 [cited 2025 Apr. 27];2:e1542. Available from: https://revistas.unheval.edu.pe/index.php/mic/article/view/1542

Similar Articles

1-10 of 79

You may also start an advanced similarity search for this article.