New molecular mechanisms related to drug resistance in tuberculosis

Authors

  • Roberto Zenteno-Cuevas University of Veracruz, Xalapa, Veracruz, Mexico

DOI:

https://doi.org/10.54034/mic.e1318

Keywords:

tuberculosis, efflux pumps, DNA reparation, drug resistance

Abstract

Despite the global efforts tuberculosis (TB) remains as one of the most important infectious disease and with the greatest impact on global public health, this situation has been aggravated in recent decades by the growing problem of drug resistance (DR). Such is the impact of the drug resistant in tuberculosis that would threaten the Millennium Development Goals. In addition to polymorphisms in genes associated with drug resistance in tuberculosis, new mechanisms have being described in recent years. Considering the above, the aim of this mini-review is to give a brief description of the traditional mechanisms related with drug resistance and to describe two of the new mechanisms that will have an important impact in the next future; efflux pumps and DNA damage repair mechanisms.

Metrics

Metrics Loading ...

References

WHO. WHO | Global tuberculosis report 2019 [Internet]. World Health Organization, editor. World Health Organization. Geneva: World Health Organization; 2020. Available from: http://apps.who.int/bookorders.%0Ahttps://www.who.int/tb/publications/global_report/en/%0Ahttp://apps.who.int/bookorders.

Malone KM, Gordon S V. Mycobacterium tuberculosis complex members adapted to wild and domestic animals. In: Advances in Experimental Medicine and Biology [Internet]. Springer New York LLC; 2017 [cited 2020 Aug 12]. p. 135–54. Available from: https://pubmed.ncbi.nlm.nih.gov/29116633/

Chiner-Oms, Sánchez-Busó L, Corander J, Gagneux S, Harris SR, Young D, et al. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. Sci Adv [Internet]. 2019 Jun 12 [cited 2020 Aug 12];5(6). Available from: https://pubmed.ncbi.nlm.nih.gov/31448322/

Van Leth F, Van Der Werf MJ, Borgdorff MW. Prevalence of tuberculous infection and incidence of tuberculosis; a re-assessment of the Styblo rule. Bull World Health Organ. 2008;

Machado D, Couto I, Viveiros M. Advances in the molecular diagnosis of tuberculosis: From probes to genomes. Infect Genet Evol. 2019;

World Health Organization (WHO). Consolidated Guidelines on Tuberculosis. Module 3 : Diagnosis -Rapid diagnostics for tuberculosis detection. Who. 2021;164.

WHO. WHO | Drug-resistant tuberculosis [Internet]. WHO. World Health Organization; 2020 [cited 2020 Aug 12]. Available from: http://www.who.int/tb/areas-of-work/drug-resistant-tb/en/

Stop TB Partnership W. The Global Plan to Stop TB 2016 – 2020. 2016;2020:1–4.

Zenteno-Cuevas R. Update on the development of TB Vaccines. Curr Pharm Biotechnol [Internet]. 2014;14(11):940–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24372249

Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, et al. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis [Internet]. 2019 Mar 1 [cited 2019 Oct 1];115:26–41. Available from: https://www.sciencedirect.com/science/article/pii/S1472979218304943?via%3Dihub

Eduardo Pérez-Martínez D, Zenteno-Cuevas R. Nanotechnology as a potential tool against drug- and multidrug-resistant tuberculosis. In: Nanotechnology Based Approaches for Tuberculosis Treatment. Elsevier; 2020. p. 37–52.

Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: A review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. 2018;

Godfroid M, Dagan T, Merker M, Kohl TA, Diel R, Maurer FP, et al. Insertion and deletion evolution reflects antibiotics selection pressure in a Mycobacterium tuberculosis outbreak. bioRxiv. 2020;

Nebenzahl-Guimaraes H, Jacobson KR, Farhat MR, Murray MB. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother [Internet]. 2014;69(2):331–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24055765

Rodrigues L, Parish T, Balganesh M, Ainsa JA. Antituberculosis drugs: reducing efflux = increasing activity. Drug Discov Today. 2017;22(3):592–9.

Piddock LJ V. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria. Clin Infect Dis. 2006;19(2):382–402.

Lentz F, Reiling N, Martins A, Molnár J, Hilgeroth A. Discovery of novel enhancers of isoniazid toxicity in mycobacterium tuberculosis. Molecules. 2018;23(4):1–9.

Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2000;24(4):449–67.

Wang K, Pei H, Huang B, Zhu X, Zhang J, Zhou B, et al. The expression of ABC efflux pump, Rv1217c-Rv1218c, and its association with multidrug resistance of mycobacterium tuberculosis in China. Curr Microbiol. 2013;66(3):222–6.

Santangelo ADELAPAZ, Romano MI, Silva PEA, Bigi F, N CM, Cataldi A. Characterization of P55 , a Multidrug Efflux Pump in Mycobacterium bovis and Mycobacterium tuberculosis. 2001;45(3):800–4.

Rodrigues L, Baptista P, Veigas B, Amaral L, Viveiros M. Contribution of Efflux to the Emergence of Isoniazid and Multidrug Resistance in Mycobacterium tuberculosis. 2012;7(4).

Malinga LA, Stoltz A, Walt M van der. Efflux Pump Mediated Second-Line Tuberculosis Drug Resistance. Mycobact Dis [Internet]. 2016 [cited 2021 Dec 16];6(3):1–9. Available from: https://www.longdom.org/abstract/efflux-pump-mediated-secondline-tuberculosis-drug-resistance-35839.html

Chopra I, O’Neill AJ, Miller K. The role of mutators in the emergence of antibiotic-resistant bacteria [Internet]. Vol. 6, Drug Resistance Updates. 2003 [cited 2018 Mar 6]. p. 137–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12860461

Ebrahimi-Rad M, Bifani P, Martin C, Kremer K, Samper S, Rauzier J, et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis [Internet]. 2003 Jul [cited 2018 Mar 6];9(7):838–45. Available from: http://wwwnc.cdc.gov/eid/article/9/7/02-0589_article.htm

Adams LB, Dinauer MC, Morgenstern DE, Krahenbuhl JL. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber Lung Dis. 1997;

Gorna AE, Bowater RP, Dziadek J. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: Varying activities at different stages of infection. Clinical Science. 2010.

Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. Microbiology (United Kingdom). 2017.

Moolla N, Goosens VJ, Kana BD, Gordhan BG. The contribution of Nth and nei DNA glycosylases to mutagenesis in mycobacterium smegmatis. DNA Repair (Amst). 2014;

Fuchs RP, Fujii S. Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harb Perspect Biol. 2013;

Mizrahi V, Warner D, Ndwandwe D, Abrahams G, Venclovas C. A novel inducible mutagenesis system in Mycobacterium tuberculosis. faseb J. 2012;26.

Sharma A, Nair D. MsDpo4—a DinB Homolog from Mycobacterium smegmatis —Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches. J Nucleic Acids. 2012;1–8.

Ordonez H, Uson ML, Shuman S. Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Res. 2014;

Pitcher RS, Brissett NC, Picher AJ, Andrade P, Juarez R, Thompson D, et al. Structure and Function of a Mycobacterial NHEJ DNA Repair Polymerase. J Mol Biol. 2007;

Miggiano R, Casazza V, Garavaglia S, Ciaramell M, Perugino G, Rizzi M, et al. Biochemical and structural studies of the Mycobacterium tuberculosis O6-methylguanine methyltransferase and mutated variants. J Bacteriol. 2013;

Wiid I, Grundlingh R, Bourn W, Bradley G, Harington A, Hoal-van Helden E, et al. O6-alkylguanine-DNA alkyltransferase DNA repair in mycobacteria: pathogenic and non-pathogenic species differ. tle. Tuberculosis. 2002;82:45–53.

O’Brien P, Ellenberger T. The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site. J Biol Chem. 2004;279:26876–26884.

Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A. 2003;

Purnapatre K, Varshney U. Uracil DNA glycosylase from Mycobacterium smegmatis and its distinct biochemical properties. Eur J Biochem. 1998;

Hassim F, Papadopoulos AO, Kana BD, Gordhan BG. A combinatorial role for MutY and Fpg DNA glycosylases in mutation avoidance in Mycobacterium smegmatis. Mutat Res - Fundam Mol Mech Mutagen. 2015;

Venkatesh J, Kumar P, Krishna PSM, Manjunath R, Varshney U. Importance of Uracil DNA Glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich Bacteria, in Mutation Prevention, Tolerance to Acidified Nitrite, and Endurance in Mouse Macrophages. J Biol Chem. 2003;

Nouvel LX, Kassa-Kelembho E, Dos Vultos T, Zandanga G, Rauzier J, Lafoz C, et al. Multidrug-resistant Mycobacterium tuberculosis, Bangui, Central African Republic. Emerg Infect Dis. 2006;

Olano J, Lopez B, Reyes A, Lemos MP, Correa N, Del Portillo P, et al. Mutations in DNA repair genes are associated with the Haarlem lineage of Mycobacterium tuberculosis independently of their antibiotic resistance. 2007/10/09. 2007;87(6):502–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17919978

Lari N, Rindi L, Bonanni D, Tortoli E, Garzelli C. Mutations in mutT genes of Mycobacterium tuberculosis isolates of Beijing genotype. J Med Microbiol. 2006;

Cox MM. Recombinational DNA repair in bacteria and the RecA protein. Progress in nucleic acid research and molecular biology. 1999.

Sander P, Papavinasasundaram KG, Dick T, Stavropoulos E, Ellrott K, Springer B, et al. Mycobacterium bovis BCG recA deletion mutant shows increased susceptibility to DNA-damaging agents but wild-type survival in a mouse infection model. Infect Immun. 2001;

Castañeda-García A, Martín-Blecua I, Cebrián-Sastre E, Chiner-Oms A, Torres-Puente M, Comas I, et al. Specificity and mutagenesis bias of the mycobacterial alternative mismatch repair analyzed by mutation accumulation studies. Sci Adv. 2020;

Arif SM, Patil AG, Varshney U, Vijayan M. Biochemical and structural studies of Mycobacterium smegmatis MutT1, a sanitization enzyme with unusual modes of association. Acta Crystallogr Sect D Struct Biol. 2017;

Arif SM, Varshney U, Vijayan M. Hydrolysis of diadenosine polyphosphates. Exploration of an additional role of Mycobacterium smegmatis MutT1. J Struct Biol. 2017;

Dos Vultos T, Blázquez J, Rauzier J, Matic I, Gicquel B. Identification of nudix hydrolase family members with an antimutator role in Mycobacterium tuberculosis and Mycobacterium smegmatis. J Bacteriol. 2006;

Verhoeven EEA, Wyman C, Moolenaar GF, Goosen N. The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J. 2002;

Güthlein C, Wanner RM, Sander P, Davis EO, Bosshard M, Jiricny J, et al. Characterization of the mycobacterial NER system reveals novel functions of the uvrDl helicase. J Bacteriol. 2009;

Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 2014 Nov;15(11):490.

Rock JM, Lang UF, Chase MR, Ford CB, Gerrick ER, Gawande R, et al. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. Nat Genet [Internet]. 2015/04/22. 2015;47(6):677–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25894501

Published

2022-02-10

How to Cite

1.
Zenteno-Cuevas R. New molecular mechanisms related to drug resistance in tuberculosis. Microbes Infect. Chemother. [Internet]. 2022 Feb. 10 [cited 2024 Oct. 7];2:e1318. Available from: https://revistas.unheval.edu.pe/index.php/mic/article/view/1318

Issue

Section

REVIEW ARTICLE

Most read articles by the same author(s)